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1. Introduction 

The usual operation of the Euclidean algorithm uses the least positive 
remainder at each step of division. However, the Euclidean algorithm can be 
modified to allow positive or negative remainders provided the absolute value 
of the remainder is less than the divisor in each step of division. 

For example, in computing the greatest common divisor of 3 and 5, there are 
three Euclidean algorithms in this extended sense: 

5 = 3(2) - 1 5 = 3(1) + 2 5 = 3(1) + 2 
3 =1(3) + 0 3 = 2(1) + 1 3 = 2(2) - 1 

2 = 1(2) + 0 2 = 1(2) + 0 

the first of which uses the least absolute remainder at each step and which is 
shorter than the others. 

A theorem of Kronecker, see Uspensky & Heaslet [3], says that no Euclidean 
algorithm is shorter than the one obtained by taking the least absolute remain-
der at each step of division. 

Goodman & Zaring [1] have shown that the number of steps of division in the 
least positive remainder Euclidean algorithm exceeds the number of steps in the 
least absolute remainder Euclidean algorithm by just the number of negative 
remainders occurring in the least absolute remainder variant. 

We became interested in exactly which pairs M and N of positive integers 
have their greatest common divisor, denoted gcd(Af, N) , computed in strictly 
fewer steps by the least absolute remainder (LAR) Euclidean algorithm than by 
the least positive remainder (LPR) Euclidean algorithm. 

Accordingly, a computer program to graphically display such pairs was writ-
ten in Applesoft BASIC (see Figure 1) and can be modified easily for other 
BASICs. The program uses counters DC and ADC to count the number of steps of 
division needed by the LPR and LAR Euclidean algorithms, respectively, in 
computing gcd(A/, N) with M > N. The program lights a pixel on the monitor at 
screen location (M, N) provided ADC < DC in this computation. 

When performing the LAR Euclidean algorithm, the program (lines 320-390) 
chooses between the quotient Q with least positive remainder R and the quotient 
Q + 1 with the alternative negative remainder AR and, if R = ABS(AR) , then it 
breaks the tie by selecting Q and R in agreement with [1]. 

The resulting image (see Figure 2) reveals some interesting features of the 
distribution of the lit (black) points (M, N) in the range 1 < M < 191, 
1 < N < 191, with M > N. Some of these are described in Section 2. 

2. Analysis 

Definition: If M > N is a pair of positive integers for which the LAR Euclidean 
algorithm is shorter than the LPR Euclidean algorithm, then we will say that M 
is a Kronecker number for N and also that (M, N) is an (ordered) Kronecker 
pair. 
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90 REM STUDY OF LAR VERSUS LPR ALGORITHMS 
110 REM DC COUNTS STEPS OF LPR ALGORITHM 
120 REM ADC COUNTS STEPS OF LAR ALGORITHM 
125 HGR2:REM HI-RES GRAPHICS PAGE IN MEMORY 
128 HC0L0R=3:HPL0T 0,0 TO 0, 191 TO 191,191 
130 FOR N=1 TO 191 
140 FOR M=N TO 191 
150 DC=0:ADC=0 
170 GOSUB 240 
180 GOSUB 310 
190 IF ADC>=DC THEN 220 
200 REM PLOT ONLY KRONECKER PAIRS 
210 HPLOT M, 192-N 
220 NEXT M 
230 NEXT N 
235 GOTO 999 
240 REM ROUTINE FOR USUAL LPR ALGORITHM 
250 M1=M:N1=N 
255 Q=INT(M1/N1) 
260 R=M1-N1*Q 
270 DC=DC+1 
280 M1=N1 
290 N1=R 
300 IF R>0 THEN 255 
305 RETURN 
310 REM ROUTINE FOR LAR ALGORITHM 
320 M1=M:N1=N 
325 Q=INT(M1/N1) 
330 R=M1-N1*Q 
340 AR=M1-N1*(Q+1) 
345 ADC=ADC+1 
350 IF R<=ABS(AR) THEN 380 
360 M1=N1 
370 N1=ABS(AR):G0T0 400 
380 M1=N1 
390 N1=R 
400 IF N1>0 THEN 325 
410 RETURN 
999 END 

Figure 1 Figure 2 

Looking again at Figure 2, we observe the densest region of contiguous 
Kronecker pairs that is bounded by the lines N = (2/3)Af and N = (1/2)M. 

Considering the coordinates of lit points in this region, we construct a 
table (see Table 1) of Kronecker numbers M for each N, along with the lengths 
of the blocks of these consecutive M. 

N 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Table 

Consecutive 
Numbers 

5 
7 
8, 9 
10, 11 
11, 12, 
13, 14, 
14, 15, 
16, 17, 
17, 18, 
19, 20, 
20, 21, 
22, 23, 

13 
15 
16, 
18, 
19, 
21, 
22, 
24, 

1 

Kronecker 
M > 

17 
19 
20, 
22, 
23, 
25, 

N 

21 
23 
24, 
26, 

25 
27 

Block 
Length 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 

Table 1 suggests the next result. 
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Theorem 1: ( i ) For N=2t+1, t > l 9 t h e t c o n s e c u t i v e i n t e g e r s 

(3/1/ + l ) / 2 , (3/1/ + 3 ) / 2 , . . . , 2/1/ - 1 

a r e a l l Kronecker numbers f o r N. 

( i i ) For N = 2 t , t > 25 t h e £ - 1 c o n s e c u t i v e i n t e g e r s 

(3/1/ + 2 ) / 2 , (3/1/ + 4 ) / 2 , . . . , 2/1/ - 1 

are all Kronecker numbers for N. 

Proof: We prove part (i). 
For a fixed integer t > 1 and any one of the integers (3/l/ + l)/2, (3/1/+ 3)/2, 

. .., 2/1/+ 1, say (3/1/ + fe)/2, where 1 < k < N - 2 and k is odd, the LAR Euclidean 
algorithm must decide, in the first step of division, between the two choices 

(3/1/ + k)/2 = /1/(1) + (N + fe)/2, 

i n which (N + k)/2 < N b e c a u s e k < N - 2 , o r 

(3/1/ + fc)/2 = /l/(2) + (k - / l / ) /2 , 

in which ABS((fe - N)/2) < N because N > -k. 
The decision is made for the latter choice according to the comparison 

ABS((k - /l/)/2) <(/!/+ fe)/2, 

which is true since N - k < N + k. 
The result now follows from the Goodman & Zaring result. 

Part (ii) of the theorem is proved similarly. 

Corollary 1: For each t > 2, we may specify a positive integer N and t consecu-
tive integers that are all Kronecker numbers for N. 

Proof: Immediate. 

Lemma 1: If M is a Kronecker number for N, then M + Nk is also a Kronecker 
number for N9 for all integers fc > 1. 

Proof: Suppose the LAR Euclidean algorithm for gcd(M, N) is 

M = Nqi + e^!, ̂ i < N, 
N = ̂ 1^2 + g2p2* p2 < pl* 

px = r2q3 + e3p3, P 3 < P2, 

so that gcd(M, N) = rs + i and each ^ = ±1. 
Since M is a Kronecker number for /!/, at least one e^ = -1, by the Goodman & 

Zaring result. 
The LAR Euclidean algorithm for M + Nk and N is then 

M + Nk = N(ql + k) + eiri, 
N = ̂ 1^2 + e2 p2' 

with the same set of values vi and e± . Hence, at least one negative e^ occurs 
and, again by the result of Goodman & Zaring, M + Nk is a Kronecker number for 
N. 
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Once more observing the patterns in the lit points in Figure 2 we see that, 
for each second coordinate /!/, the values of first coordinates fall into certain 
progressions. 

Theorem 2: For each integer N > 3 there are arithmetic progressions of inte-
gers M > N that are all Kronecker numbers for N. More precisely, 

(i) if /!/ = 2t + 1, t > 1, then the arithmetic progressions 

{Nk + t + 1}, {Nk + t + 2}, ..., {Nk + t + (N - l)/2}, k > 1, 

consist of integers each of which is a Kronecker number for /!/, and 

(ii) if N = 2t, £ > 2, then the arithmetic progressions 

{tffc + t + 1} , {Nk + t + 2 } , . . . , {tffc + t + (/!/ - 2 ) / 2 } , k > 1, 
consist of integers each of which is a Kronecker number for 21/. 

Proof: We prove part (i). 
By Lemma 1, since the common difference in each progression is /!/, it is 

enough to show that the first term in each progression is a Kronecker number 
for /!/. 

When k = 1 the first terms are, respectively, 

N+t+l,N+t+2, ...9 N + t + (N - l)/2. 
Since t = (N - l ) / 2 , these terms a r e , r e s p e c t i v e l y , 

(3/1/ + l ) / 2 , (3/1/ + 3 ) / 2 , . . . , 2/1/ - 1, 
which are Kronecker numbers for N by Theorem 1. 

In the above theorems we have begun with the smaller value N of a Kronecker 
pair and then constructed the companion number M. In the reverse direction, we 
offer the next result. 

Theorem 3: (i) If M is odd, M > 7, then M is a Kronecker number for both 
(M ± l)/2. 

(ii) If M is even, M > 8, then M is a Kronecker number for both 
(M ± 2)/2. 

Proof: (i) We prove the case (M + I)12. The LPR Euclidean algorithm here is 

M = (l)((Af + l)/2) + (M - l)/2, 
(M + l)/2 = (1)((M - l)/2) + 1, 
(M - l)/2 = ((M - 1)/2)(1) + 0, 

done in three steps, while the LAR Euclidean algorithm begins 

M = (2)((Af + l)/2) + -1, 

because ABS(-l) < (M - l)/2, since M > 3, and continues 

(M + l)/2 = ((M + 1)/2)(1) + 0, 

done in two steps. 
Similarly, we can show that M is also a Kronecker number for (Af - 1) /2. 

(ii) We prove the case (M + 2)/2. The LPR Euclidean algorithm here 
begins 

M = (1)((M + 2)/2) + (M - 2)/2, 
(M + 2)/2 = (l)((Af - 2)/2) + 2, 

and the next division [by 2 into (M - 2)/2] is the last step, or next to last, 
according as (M - 2)/2 is even or odd. So this routine takes three or four 
steps, accordingly. 

164 [May 



ON THE LEAST ABSOLUTE REMAINDER EUCLIDEAN ALGORITHM 

The LAR Euclidean algorithm begins 

M = (2)((M + 2)/2) + -2, 

because ABS(-2) < (M - 2)/2, since M > 6, and there are either one or two steps 
more according to the parity of (M + 2)/2. Since (M + 2)/2 and (M - 2)/2 have 
the same parity, this means that the LAR variant is accomplished in one step 
less than the LPR Euclidean algorithm. 

Similarly, we can show that M is a Kronecker number for (M - 2)/2. 

3. The Fibonacci Numbers 

The Fibonacci numbers, which are defined by the relations F± = F^ = 1 and 
Fn = Fn_i + Fn_2 f° r n - 3, play an extremal role in questions relating to the 
number of steps in the LPR Euclidean algorithm. For example, in [2] Shea shows 
that the pair of integers with the smallest sum whose gcd takes exactly k steps 
using the LPR Euclidean algorithm is i^+i?

 Fk+2- Not surprisingly, the Fibo-
nacci numbers enter our investigation in a similar way. 

Theorem 4: Any positive integer n may be specified as the difference in the 
number of steps of division performed in computing gcd(M, N) by the LPR and LAR 
Euclidean algorithms. In fact, this difference n is attained in the compu-
tation of both gcd(F2n+25 ^2n+3) a n d gcd(^2n+3' F2n + 0 • 
Proof: It is well known that the LPR Euclidean algorithm applied to consecutive 
Fibonacci numbers Fy, and F^+i takes k - 1 steps of division, each with quotient 
1 and hence with sequence of remainders F^_l5 ^ _ 2 , Fk-3> •••5 ^2> a n d 0# 

The first quotient in the LAR Euclidean algorithm applied to Fk and F^+i is 
2 with remainder -F^-2' If k is an even integer, then each subsequent divi-
sion uses a quotient of 3, because of the inequality 

2F2t < F2t + 2 < ?>F2t f o r all t > 2, 
which may be proved by induction on t. Thus, the sequence of remainders is 
~Fk-2> ~Fk-h> ~Fk-€>> •••» ~F2> a n d ^. So there are k/2 steps of division. 

Hence, the difference in the number of steps of the two methods is 

(k - 1) - k/2 = (k - 2)/2. 

As k varies over the even integers, k > 4, this difference (k - 2)/2 varies over 
all the positive integers. For k = 2n + 2 in particular, gcd(F2n+2> ^2n+3) 
shows a. difference of exactly n steps of division. 

The rest of the theorem is proved similarly. 

As noted by an anonymous referee, it seems interesting to point out that, 
whereas the usual Euclidean algorithm leads to the familiar continued fraction 

F2k+3/F2k+2 = (1; 1> 1> •••> D> 2k + 1 ones, 

the least absolute remainder Euclidean algorithm leads to 
F2k+3/F2k+2 = (2; "3, -3, ..., -3), k threes. 
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