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1. Introduction 

In 1878s J. W. L. Glaisher [1] derived a number of results about certain 
infinite sums involving the inverse tangent function; in particular, he showed 
for complex 0 (0 < 101 < °°), that 

/IN v^ *. 2 0 2 IT _ /tanh TT0\ 
(1) > arctan —TT- = — - arctanl — . 

„^i n2 4 \tanir0 / 
This equation appears again in 1908 as an exercise in T. J. I1 a. Bromwichfs 
book [2, p. 259]. Generalizations of (1) are found in [3], [4, p. 276], and 
[5, p. 749]. 

Letting 0 -> 1- in (1), Glaisher also obtained the elegant result: 

(2) V arctan —5- = — TT. 
n=i n1 4 

A very simple derivation of (2) and a history of this series appeared recently 
in [6]. 

It is easy to see that the two members of (1) may differ by an integer mul-
tiple of TT; this pathology occurs often in many results of this type, since the 
inverse tangent function is a multiple-valued function. Hence, if we use only 
the principal value of the inverse tangent function, we must write (1) in the 
form 
ro\ v- 2 ° 2 l l _L \ _ /tanh TT0\ 
(3) > arctan —~- = -7 + m I71" "~ arctan — — 

rf^l n1 \4 / V tan TT0 / 
for some m e Z = {0, ±1, ±2, . . . } . 

In this paper we shall derive computationally more useful results than (3); 
our results will yield some interesting corollaries not available heretofore. 
Indeed we shall show, for complex 0 (0 < 161 < °°), that 
f/\ V̂  - 2 0 2 (a l \ *. / sin 2TT0 \ 

(4) > arctan —«- = I 0 - - TT - arctanl r— —-) 
rfrJ

l nl V 4/ Vcos 2TT0 - exp 2TT0/ 
where, here and in what follows, the principal value of the inverse tangent 
function is assumed. We shall also show that (3) and (4) are, in fact, equi-
valent. We shall then give (in Section 5) some generalizations of (4). 
Finally, in Section 6, we deduce some interesting particular cases of one of 
the general summation formulas which we obtain in Section 5. 

2. Derivation of the Summation Formula (4) 

To derive (4), we shall use the Euler-Maclaurin summation formula ([7, p. 
27]; see also [8, p. 521]) 

JlfW) = ff(x)dx +\f{0) +\f{n) + fnp(x)f>( 
k=o Jo L z Jo 

x)dx 
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where P(x), f o r r e a l x, i s a s a w - t o o t h f u n c t i o n : P(x) = x - [x] - 1 /2 . L e t t i n g 
f(x) = a r c t a n ( 2 0 2 / x 2 ) and n -> °°, we o b t a i n 

\ ^ *. 2 Q 2 f°° «- 2 e 2 ^ _, TT / o p f 0 0 ^ / x ^ ^ 
> arctan --«- = j arctan — ^ " ^ + T _ 40 I Fix)—r j-. 

Assuming 0 < 0 < °°  and making simple transformations in the integrals, we have 

(5) X arctan yj- = - | + 0 f arctan ~ d x - 2 f P(0/2^) ^ ^ 
fc = 1 K ^ Jo X JQ 1 + X 

The first integral on the right side of (5) can be evaluated in a number of 
ways or by using tables of integrals (cf. [5] and [9]). We omit the details 
and give the result: 

(6) J arctan(2/^2)A: = ir. 
Jo 

The saw-tooth function P(x) is a sectionally (piecewise) smooth periodic 
function with unit period. It can be represented by a Fourier series which is 
given by 

(7) P(x) = - - V \ sin(27Tte). 

The series given in (7) converges uniformly in every closed interval where P(x) 
is continuous. The saw-tooth function and its Fourier series representation 
are discussed in detail, for example, in [10, pp. 107-24]. 

To evaluate the second integral in (5), we use (7) and interchange the sum 
and integral, thus giving: 

(8) f P(0/2*)-^4 =-i £ \ rsin(2/20^)-^^.. 
JO 1 + X4 TT ]^l K JQ 1 + X* 

Using [9, p. 408, Sec. 3.727, Eq. (4)], we find that 

(9) J s in(2/207r /oO Xdx . - = £ exp(-207Tk)sin(207r/c) . 
J o 1 + X 2 

Hence, from (5), (6), (8), and (9), we obtain 
oo O Cj2 / 1 \ J 3 0 1 

Y] a r c t a n —j- = (e - y W + ^ j exp(-2eTrfe')sin(20irfe) ; 

and now, using [5, p. 740, Eq. (5)], we can write the sum on the right in closed 
form, thus giving (4), provided that 0 < 0 < °°. 

It can easily be shown that the right member of (4) is indeed an even func-
tion of 0 and that, as 0 approaches zero, it vanishes. Hence, (4) is valid for 
real 0 and (by appealing to the principle of analytic continuation) it is valid 
for complex 0 . This evidently completes the derivation of the summation 
formula (4). 

3. Equivalence of the Sums (3) and (4) 

Defining 
sin 2x 

cos 2x - exp 2x 
we note the easily verified identity 

tan x _ tan x - E,(x) 
tanh x 1 + £,(x) tan x" 
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S i n c e t a n x = t a n ( x - rm\) , f o r a l l m e Z , t h i s g i v e s 
t a n x _ t a n ( ^ - rrns) - £(x) 
t a n h x 1 + ^ ( x ) t a n ( ^ - rrm)' 

Taking the inverse tangent of both members of this equation and observing that 

arctan u - arctan v = arctan((u - v)/(1 + uv)), 

we obtain 
/ tan x \ 

arctanl J = (x - nnr) - arctan ^(x) . 
\tanh xl 

Now, using arctan x = IT/2 - arctan l/x, we deduce from this the identity 
IT /tanh x\ i sin 2x \ 

(10) - - arctan + mi\ = x - arctan 
2 \tan x I \cos 2x - exp 2x1 

for some m e Z. Replacing x by 6TT, (10) shows that the results in (3) and (4) 
are indeed equivalent. 

4. Special Cases of Equation (4) 

In (4), if we set 6 = k and 6 = k/2 (k = 1, 2, 3, . . . ) , we obtain 

(11) V arctan —«- = (k - yjir 
w= i nz \ 4/ 

and 

(12) ^ arctan ^ - ( f c - i ) f , 

respectively; now, splitting the sum in (11) into even and odd terms, and using 
(12), we deduce also that 

(13) ±Q arctan ( 2 n
2 f 1 ) 2 - f *• 

Equation (2) follows from (11) when k = 1. Equations (12) and (13) were 
also derived by Glaisher for k = 1. Ramanujan (circa 1903) derived (11), (12), 
and (13) for k = 1 [11, Ch. 2]. 

5. Generalizations of the Summation Formula (4) 

Letting f(x) = arctan(s2"/x2n) in the Euler-Maclaurin summation formula 
(cited already in Section 2), but now using [9, p. 608, Sec. 4.532, Eq. (2)] 
and [5, p. 396, Eq. (2)] to compute the two integrals, in basically the same 
way as (4) was obtained, we can derive the result 

(14) £ arctan f j - = U sec {- - f)f + ± (-1)* arctan( J ± ^ ) 
k=i k^n \ m III fe=i \cos £ - exp nv 

(0 < Isl < ~; n = i, 2, 3, . . . ) , 
where 

2fc - 1 0 . 2k - 1 
5 = 2irs cos — : TT, n = 2i\z s m —; IT. 

4n 4n For n = 1 and z - / 2 0 , (14) r e d u c e s t o ( 4 ) . For n = 2 , s e t t i n g a = i\x cos 
TT/8 and 3 = TT# s i n TT/8, we g e t 

"^ r / s i n 2a 
- a r c t a n (15) J ] a r c t a n ~r 

k= 1 * Vcos 2a - exp 2 3/J 
s i n 2g \~| _ TT 

DS 23 - exp 2a/J 4 ' 
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G l a i s h e r [1] o b t a i n e d , modulo an i n t e g e r m u l t i p l e of ir, t h a t 

(16) E a r c t a n ^ 
k = 1 

/tan a tanh a - tan 6 tanh B - tan a tan 6 - tanh a tanh B\ 
= arctanl—————— ). 

\tan a tanh a - tan g tanh 6 + tan a tan g + tanh a tanh £/ 
Hence, the difference of the right members of (15) and (16) is an integer mul-
tiple of TT„ 

By splitting the left member of (14) into even and odd terms, we easily 
find that 

?2.n 
(17) > arctan -— —z— = ~r sec 

k=o (2k + l) 2 * 4 
4n 

+ E (-Dk 

Zc = 1 

arctan \co 
sin g 

S ^ ~ e x P Tl 
J - arctanf-

sin g/2 
n/2) cos £/2 - exp 

(n = 1, 2, 3, . . . ) . 

Glaisher [1] also obtained results, modulo an integer multiple of ir, for the 
left member of (17) in the special cases when n - \ and n = 2. 

We note here that, in general, when an infinite sum of arctangent functions 
is given modulo an integer multiple of IT, the Euler-Maclaurin summation formula 
appears to be helpful in attempting to derive computationally more useful 
results. 

By using (14) and (17), we have, in addition, 

°°  h i S 2 n 7T 
E (~l)/c+1 arctan 
fc~ l 

+ E (-D* 
k= 1 

k2n 

arctanf— 
\co: 

sin g 
7) 2 arctan 

sin g/2 
DS g - exp n/ ~ "\cos £/2 - exp n 

In particular, letting n = 1 and 3 = /20, we get 

/-.̂ x Y ^ / , X ^ + I 202 u ^ l sin 2TT 

(18) E (-D arctan —?r = T - arctan' 

71) 

^ = 1 k2 ( 
Vcos 2ir( 

z-n-e) 4 " ' • " ^ " I c o s 2ir0 - exp 2T 

_L o .. / s i n TT9 \ 
+ 2 a r c t a n r . 

Vcos TT0 - exp TT0/ 
By using [4, p. 277, Eq. (42.1.10)], (18) may be written equivalently as 

2 0 2 . / s i n h vQ\ /-.^x V ^ / I N ^ + I ^ ° ~ _ / s i n h TT0\ IT 
(19) V ( -1 ) a r c t a n —«- = a r c t a n —: —) - 7 . 

fc 1 ^ \ s i n TT0 / 4 
8 . A S p e c i a l C a s e of F o r m u l a (18) 

I n (18) o r ( 1 9 ) , i f we s e t 0 = I (I = 1, 2 , 3 , . . .) , we deduce t h e i n t e s t -
i n g r e s u l t : 

(19) E ( - l ) f c + 1 a r c t a n 4 V = 7 U = 1, 2 , 3 , - - - ) » 

from which it easily follows that 

and 

E (-Dfc + 1 arctan 
fe= 1 

E (-Dk+1 arctan 
/ c = 1 

2 U 2 ^)fe2' 
k4 + 4£2m2 

2(£2 + m2)k2' 
kh - 4£2^2 

= 0 (TTZ = 1, 2, 3, ...) 

(m = 1, 2, 3, . . . ) ; 

A being a positive integer. 
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Equation (19) apparently was first derived by Ramanujan for the special case 
£ = 1 [11, Ch. 2] and it is also derived for £ = 1 by Wheelon [12, p. 46]. 
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DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, S.C. 29150 

At their summer meeting, the board of directors voted to publish the indices on a 3.5-inch high density disk. The price will be $40.00 to non-
members and $20.00 to members plus postage. Disks will be available for use on the Macintosh or any IBM compatible machine using Word 
Perfect, Word, First Choice or any of a number of other word processors. More on this will appear in the February 1993 issue. 
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