ON SEQUENCES HAVING SAME MINIMAL ELEMENTS
 IN THE LEMOINE-KATAI ALGORITHM

Jukka Pihko
University of Helsinki, Hallituskatu 15, SF-00100 Helsinki, Finland
(Submitted February 1991)

1. Introduction

Let $1=a_{1}<a_{2}<\ldots$ be an infinite strictly increasing sequence of positive integers. Let n be a positive integer. We write
(1.1) $n=a_{(1)}+a_{(2)}+\ldots+a_{(s)}$,
where $a_{(1)}$ is the greatest element of the sequence $\leq n, a_{(2)}$ is the greatest element $\leq n-\alpha_{(1)}$, and, generally, $a_{(i)}$ is the greatest element $\leq n-a_{(1)}-a_{(2)}-$ $\cdots-a_{(i-1)}$. This algorithm for additive representation of positive integers was introduced in 1969 by Kátai ([2], [3], [4]). Lemoine had earlier considered the special cases $a_{i}=i^{k}, k \geq 2$ ([5], [6]), and $a_{i}=i(i+1) / 2$ ([7]). (See [10] for further information and note also [1].) The above algorithm is, in turn, a special case of a more general algorithm introduced by Nathanson ([9]) in 1975.

The following basic definitions and results are taken from [8] and [10]. We denote here the set of positive integers by N .

Let $1=a_{1}<a_{2}<\cdots$ be an infinite strictly increasing sequence of positive integers with the first element equal to 1 . We call it an A-sequence and denote by A the sequence itself or sometimes the set consisting of the elements of the sequence. We denote the number s of terms in (1.1) by $h(n)$. If the set $\{n \in \mathrm{~N} \mid h(n)=m\}$ is nonempty for some $m \in \mathrm{~N}$, we say that y_{m} exists and define y_{m} to be the smallest element of this set. If y_{m} exists for every $m \in N$, we say that the Y-sequence exists and we denote the sequence $1=y_{1}<y_{2}<\ldots$ by y. The elements y_{m} are also called minimal elements.

Theorem 1.1 (Lord): Let y_{k} be given $(k \in N)$. Then y_{k+1} exists if and only if there exists a number $n \in \mathrm{~N}$ such that

$$
a_{n+1}-a_{n}-1 \geq y_{k} .
$$

Furthermore, if y_{k+1} exists, then $y_{k+1}=y_{k}+a_{m}$, where m is the smallest number in the set

$$
\left\{n \in \mathrm{~N} \mid a_{n+1}-a_{n}-1 \geq y_{k}\right\} .
$$

Proof: [8], [10, p. 9].
It follows that the Y-sequence exists if and only if the set

$$
\left\{a_{n+1}-a_{n} \mid n \in \mathrm{~N}\right\}
$$

is not bounded.
For technical reasons, we sometimes wish to start the A-sequences and Y sequences with an element $a_{0}=0$ or $y_{0}=0$, respectively. The following result is from [10, p. 14].
Theorem 1.2: Suppose that $B: 0=b_{0}<1=b_{1}<b_{2}<\cdots$ is an infinite sequence of nonnegative integers. Then B is the Y-sequence for some A-sequence if and only if it satisfies the following conditions:
(a) For every $n \in N$, either
(1) $b_{n+1}-b_{n}=b_{n}-b_{n-1}$, or
(2) $b_{n+1} \geq 2 b_{n}+1$.
(b) The condition (2) in (a) holds for infinitely many $n \in N$.

In section 2 of this paper we determine, given a sequence B satisfying the conditions (a) and (b) above, $a l l A$-sequences A such that $Y=B$ (Theorem 2.1). In section 3 we establish how many such A-sequences there are (Theorem 3.5). Fibonacci numbers make their appearance there (after Definition 3.1). For other connections of Fibonacci numbers with the Lemoine-Kátai algorithm we refer to [11] and especially to [12], which also provides part of the motivation for this paper.

2. Determination of All A-Sequences Having a Given Y-Sequence

Theorrem 2.1: Let the sequence $B: 0=b_{0}<1=b_{1}<b_{2}<\cdots$ satisfy the conditions (a) and (b) of Theorem 1.2. For the A-sequence $A: 1=a_{1}<\alpha_{2}<\ldots$, we have $Y=B$ if and only if the following conditions hold:
(a) $A \cap\left[b_{1}, b_{2}\right]=\left\{1,2, \ldots, b_{2}-1\right\}$.
(b) Let $n>1$. If $b_{n+1}-b_{n}=b_{n}-b_{n-1}$, then $A \cap\left[b_{n}, b_{n+1}\right]=\emptyset$.
(c) Let $n>1$. If $b_{n+1} \geq 2 b_{n}+1$, then $A \cap\left[b_{n}, b_{n+1}\right]=\left\{a_{s}, \ldots, a_{t}\right\}$, where $a_{s}<\cdots<a_{t}$, and
(2.1) $b_{n}+1 \leq a_{s} \leq 2 b_{n}-b_{n-1}$,

$$
\begin{align*}
& a_{i+1}-a_{i} \leq b_{n}, i=s, \ldots, t-1(\text { if } t>s) \tag{2.2}\\
& a_{t}=b_{n+1}-b_{n}
\end{align*}
$$

Proof: The "if" part can be proved in almost exactly the same fashion as the corresponding part in the proof of Theorem 1.2. In fact, we only have to suppress " $=0$ " on page 16 , line 7 in [10]. Notice also that the condition

$$
a_{s} \leq 2 b_{n}-b_{n-1}
$$

in (2.1) means that (2.2) holds also for $i=s-1$. To see this, observe that (2.4) $\quad a_{s-1}=b_{n}-b_{n-1}$,
which follows easily using conditions (a), (b), and (c).
To prove the "only if" part we suppose now that $A: 1=a_{1}<a_{2}<\ldots$ is an A-sequence such that $Y=B$. We must prove that conditions (a), (b), and (c) hold. Condition (a) is trivial. Let $n>1$ and suppose that

$$
b_{n+1}-b_{n}=b_{n}-b_{n-1}
$$

From our definitions, it follows easily that
(2.5) $A \cap B=\{1\}$.

Suppose that condition (b) is not true. Then, using (2.5) and $B=Y$, we would get

$$
\begin{aligned}
& \left\{y_{n}+1, y_{n}+2, \ldots, y_{n}+\left(y_{n}-y_{n-1}\right)\right\} \cap A \\
& =\left\{b_{n}+1, \ldots, b_{n+1}\right\} \cap A \neq \emptyset
\end{aligned}
$$

and so, by $[10$, Th. 1.13, p. 13],

$$
b_{n+1} \geq 2 b_{n}+1
$$

a contradiction.

Suppose now that $n>1$ and $b_{n+1} \geq 2 b_{n}+1$. Suppose further that (a) holds and that (b) and (c) hold for all $n^{\prime} \in \mathrm{N}, 1<n^{\prime}<n$ if $n>2$. We prove that (c) holds for n. Since $b_{n}+1 \leq b_{n+1}-b_{n}<b_{n+1}$ and since, by Theorem 1.l, $y_{n+1}-y_{n}=b_{n+1}-b_{n} \in A$, we see that

$$
A \cap\left[b_{n}, b_{n+1}\right]=\left\{a_{s}, \ldots, a_{t}\right\}
$$

with $a_{s}<\cdots<a_{t}$ and $b_{n+1}-b_{n}=a_{h}$ for some $h, s \leq h \leq t$. We must prove that $h=t$. By Theorem 1.1 and the definition of h, we get

$$
a_{h+1}-a_{h}-1 \geq b_{n}
$$

If $h<t$, then we would get

$$
a_{n+1}-a_{h}-1 \leq b_{n+1}-\left(b_{n+1}-b_{n}\right)-1=b_{n}-1<b_{n}
$$

a contradiction. It follows that (2.3) holds.
If we had $a_{i+1}-a_{i}>b_{n}$ for some $i, s-1 \leq i \leq t-1$, then we would have $a_{i+1}-a_{i}-1 \geq b_{n}$ and so, by Theorem 1.1,

$$
b_{n+1} \leq b_{n}+a_{i}<b_{n}+a_{t}=b_{n+1}
$$

a contradiction. This proves (2.2). Finally, (2.1) follows from (2.5) and the case $i=s-1$ above, noticing that using our induction hypothesis we get (2.4) as before. Theorem 2.1 is now proved.

3. The Number of A-Sequences Having a Given Y-Sequence

Suppose that $B: 0=b_{0}<1=b_{1}<b_{2}<\cdots$ satisfies conditions (a) and (b) of Theorem 1.2. Let $n>1$ and suppose that $b_{n+1} \geq 2 b_{n}+1$. Let $I(n)$ be the number of different sequences $\alpha_{s}<\cdots<\alpha_{t}$ satisfying conditions (2.1), (2.2), and (2.3). We are going to evaluate $I(n)$. For that, we need the following
Definition 3.1: Let $j \in \mathrm{~N}$. Let $u_{i}^{(j)}, i=1,2, \ldots$, be such that

$$
u_{i}^{(j)}= \begin{cases}2^{i-1} & \text { for } i=1,2, \ldots, j \\ u_{i-1}^{(j)}+\ldots+u_{i-j}^{(j)} & \text { for } i>j .\end{cases}
$$

In particular, we have $u_{i}^{(1)}=1, i=1,2, \ldots$, and $u_{i}^{(2)}=F_{i+1}, i=1,2, \ldots$ (where F_{i+1} denotes the Fibonacci number).
Lemma 3.2: Let $a, b \in Z, a<b, j \in N$. The number of all possible sets $\left\{c_{1}\right.$, $\left.\ldots, c_{k}\right\}$ (k is not fixed), where

$$
a=c_{1}<c_{2}<\ldots<c_{k}=b, c_{i} \in \mathrm{Z}, i=1, \ldots, k
$$

and

$$
c_{i+1}-c_{i} \leq j, i=1, \ldots, k-1,
$$

is $u_{b-a}^{(j)}$.
Proof: If $b-a \leq j$, then any subset of the set $\{a+1, \ldots, b-1\}$, arranged as a sequence $c_{2}<\cdots<c_{k-1}$, gives rise to a permissible sequence

$$
a=c_{1}<c_{2}<\cdots<c_{k}=b
$$

There are $b-a-1$ members in the set $\{a+1, \ldots, b-1\}$.
If $b-a>j$, then c_{2} must be one of the numbers $a+1, a+2, \ldots, a+j$, and we use induction. \square

Theorem 3.3: Let $n>1$ and $b_{n+1} \geq 2 b_{n}+1$.
(a) $I(n)=2^{b_{n+1}-2 b_{n}-1}$, if $2 b_{n}-b_{n-1} \geq b_{n+1}-b_{n}$.
(b) $I(n)=\sum_{i=g}^{h} u_{i}^{\left(b_{n}\right)}$, if $2 b_{n}-b_{n-1}<b_{n+1}-b_{n}$, where
[Nov.

$$
g=b_{n+1}-3 b_{n}+b_{n-1} \quad \text { and } \quad h=b_{n+1}-2 b_{n}-1
$$

(c) In case (b), if $\left(b_{n+1}-b_{n}\right)-\left(b_{n}+1\right) \leq b_{n}$, then

$$
I(n)=2^{b_{n+1}-2 b_{n}-1}-2^{b_{n+1}-3 b_{n}+b_{n-1}-1}
$$

Proof: These results follow easily from Theorem 2.1, the definition of $I(n)$, and the use of Lemma 3.2.

Corollary 3.4: Let $n>1$ and $b_{n+1} \geq 2 b_{n}+1$. We have $I(n)=1$ if and only if
(a) $b_{n+1}=2 b_{n}+1$, or
(b) $b_{n+1}=2 b_{n}+2$ and $b_{n}=b_{n-1}+1$.

Proof: The "if" part is clear. To prove the "only if" part, we suppose that neither (a) nor (b) holds. Then we must have $b_{n+1} \geq 2 b_{n}+2$.
(1) If $b_{n+1}=2 b_{n}+2$, we must have $b_{n}-b_{n-1} \geq 2$. It follows that $2 b_{n}-b_{n-1} \geq b_{n}+2=b_{n+1}-b_{n}$.
According to Theorem 3.3, we have

$$
I(n)=2^{b_{n+1}-2 b_{n}-1}=2^{2-1}=2
$$

(2) Let $b_{n+1} \geq 2 b_{n}+3$. If $2 b_{n}-b_{n-1} \geq b_{n+1}-b_{n}$, then, according to Theorem 3.3, we have

$$
I(n)=2^{b_{n+1}-2 b_{n}-1} \geq 2^{3-1}=4
$$

On the other hand, if $2 b_{n}-b_{n-1}<b_{n+1}-b_{n}$, then, again by Theorem 3.3,

$$
I(n) \geq u_{h}^{\left(b_{n}\right)}=u_{b_{n+1}-2 b_{n}-1}^{\left(b_{n}\right)} \geq u_{3-1}^{\left(b_{n}\right)}=u_{2}^{\left(b_{n}\right)}>1
$$

In the last inequality, we use the fact that $b_{n}>1$, which follows from $n>1$, and the proof is complete.
Theorem 3.5: Let $B: 0=b_{0}<1=b_{1}<b_{1}<\ldots$ be an infinite sequence of nonnegative integers satisfying the conditions (a) and (b) of Theorem 1.2. Let $I(B)$ denote the number of different A-sequences for which $Y=B$. Then $I(B)$ is finite if and only if there exists $n_{0} \in N$ such that $b_{n+1} \leq 2 b_{n}+1$ for all $n \geq n_{0}$. In that case

$$
\begin{equation*}
I(B)=\prod_{\substack{1 \leq n \leq n_{0} \\ b_{n+1} \geq 2 b_{n}+1}} I(n) \quad[\text { we define } I(1)=1] \tag{3.1}
\end{equation*}
$$

Proof: From Theorem 2.1 it is clear that $I(B)$ is finite if and only if for some point on we always have $I(n)=1$ for n satisfying $b_{n+1} \geq 2 b_{n}+1$. From Corollary 3.4 we know exactly when $I(n)=1$. It remains to observe that condition (b) of Corollary 3.4 can hold for at most one n.

Examples 3.6:
(a) ([10, p. 16], [12, p. 296]) Let B be defined by $b_{0}=0, b_{n+1}=2 b_{n}+1$, $n=0,1, \ldots$. Then $b_{n}=2^{n}-1$ for every $n \in \mathrm{~N}$ and by (3.1) we get $I(B)=1$. The only A-sequence A satisfying $Y=B$ is given by $a_{n}=2^{n-1}, n=1,2, \ldots$.
(b) Let us modify the example given above by taking $B: 0,1,3,10,17,24$, $31,63,127, \ldots, 2^{n}-1, \ldots$. Using (3.1) and Theorem 3.3 [we can use (b) or (c)], we get $I(B)=I(2)=6$. The six A-sequences for which $Y=B$ are given by

$$
\begin{aligned}
& 1,2,4,5,6,7,32,64, \ldots, 2^{n}, \ldots . \\
& 1,2,4, \\
& 1,2,4,5,7,32,64, \ldots, 2^{n}, \ldots .9 \\
& 1,2,4, \\
& 1,2,
\end{aligned} 5,6,7,32,64, \ldots, 2^{n}, \ldots .9
$$

(c) We modify the examples given above and take $B: 0,1,3,17,31,63$, 127, We again obtain $I(B)=I(2)$. This time we have to use part (b) of Theorem 3.3 to calculate $I(2)$. The result is

$$
I(B)=I(2)=u_{9}^{(3)}+u_{10}^{(3)}=149+274=423 .
$$

Acknowledgments

This research was done while I spent the Fall term 1988 at the University of Bergen, Norway. I wish to express my sincere gratitude to Ernst S. Selmer for his interest and for carefully reading the manuscript. I thank NAVF for financial support.

References

1. A. S. Fraenke1. "Systems of Numeration." Amer. Math. Monthly 92 (1985):105114.
2. I. Kátai. "Some Algorithms for the Representation of Natural Numbers." Acta Sci. Math. (Szeged) 30 (1969):99-105.
3. I. Kátai. "On an Algorithm for Additive Representation of Integers by Prime Numbers." Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 12 (1969):2327.
4. I. Kátai. "On Additive Representation of Integers." Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970):77-81.
5. E. Lemoine. "Décomposition d'un nombre entier N en ses puissances $\mathrm{n}^{\text {ièmes }}$ maxima." C. R. Paris XCV (1882):719-22.
6. E. Lemonie. "Sur la décomposition d'un nombre en ses carrés maxima." Assoc. Franc. Tunis 25 (1896):73-77.
7. E. Lemoine. "Note sur deus nouvèles décompositions des nombres entiers." Assoc. Franc. Paris 29 (1900):72-74.
8. G. Lord. "Minimal Elements in an Integer Representing Algorithm." Amer. Math. Monthly 83 (1976):193-95.
9. M. B. Nathanson. "An Algorithm for Partitions." Proc. Amer. Math. Soc. 52 (1975):121-24.
10. J. Pihko. "An Algorithm for Additive Representation of Positive Integers." Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes No. 46 (1983):1-54.
11. J. Pihko. "On Fibonacci and Lucas Representations and a Theorem of Lekkerkerker." Fibonacci Quarterly 26.3 (1988):256-61.
12. J. Pihko. "Fibonacci Numbers and an Algorithm of Lemoine and Kátai." In Applications of Fibonacci Numbers. Ed. G. E. Bergum et al. Kluwer: Academic Publishers, 1990, pp. 287-97.

AMS Classification numbers: 11B37, 11A67

