ON SEQUENCES HAVING SAME MINIMAL ELEMENTS IN THE LEMOINE-KATAI ALGORITHM

Jukka Pihko

University of Helsinki, Hallituskatu 15, SF-00100 Helsinki, Finland (Submitted February 1991)

1. Introduction

Let $1 = a_1 < a_2 < \cdots$ be an infinite strictly increasing sequence of positive integers. Let *n* be a positive integer. We write

 $(1.1) \quad n = a_{(1)} + a_{(2)} + \cdots + a_{(s)},$

where $a_{(1)}$ is the greatest element of the sequence $\leq n$, $a_{(2)}$ is the greatest element $\leq n - a_{(1)}$, and, generally, $a_{(i)}$ is the greatest element $\leq n - a_{(1)} - a_{(2)} - \cdots - a_{(i-1)}$. This algorithm for additive representation of positive integers was introduced in 1969 by Kátai ([2], [3], [4]). Lemoine had earlier considered the special cases $a_i = ik$, $k \geq 2$ ([5], [6]), and $a_i = i(i + 1)/2$ ([7]). (See [10] for further information and note also [1].) The above algorithm is, in turn, a special case of a more general algorithm introduced by Nathanson ([9]) in 1975.

The following basic definitions and results are taken from [8] and [10]. We denote here the set of positive integers by N.

Let $1 = a_1 < a_2 < \cdots$ be an infinite strictly increasing sequence of positive integers with the first element equal to 1. We call it an *A*-sequence and denote by *A* the sequence itself or sometimes the set consisting of the elements of the sequence. We denote the number *s* of terms in (1.1) by h(n). If the set $\{n \in \mathbb{N} \mid h(n) = m\}$ is nonempty for some $m \in \mathbb{N}$, we say that y_m exists and define y_m to be the smallest element of this set. If y_m exists for every $m \in \mathbb{N}$, we say that the *Y*-sequence exists and we denote the sequence $1 = y_1 < y_2 < \cdots$ by *Y*. The elements y_m are also called minimal elements.

Theorem 1.1 (Lord): Let y_k be given $(k \in \mathbb{N})$. Then y_{k+1} exists if and only if there exists a number $n \in \mathbb{N}$ such that

 $a_{n+1} - a_n - 1 \ge y_k$.

Furthermore, if y_{k+1} exists, then y_{k+1} = y_k + $a_m,$ where m is the smallest number in the set

 $\{n \in \mathbf{N} | a_{n+1} - a_n - 1 \ge y_k \}.$

Proof: [8], [10, p. 9]. □

It follows that the Y-sequence exists if and only if the set

 $\{a_{n+1} - a_n | n \in \mathbf{N}\}$

is not bounded.

For technical reasons, we sometimes wish to start the A-sequences and Y-sequences with an element $a_0 = 0$ or $y_0 = 0$, respectively. The following result is from [10, p. 14].

Theorem 1.2: Suppose that $B: 0 = b_0 < 1 = b_1 < b_2 < \cdots$ is an infinite sequence of nonnegative integers. Then B is the Y-sequence for some A-sequence if and only if it satisfies the following conditions:

(a) For every $n \in \mathbf{N}$, either

344

[Nov.

- (1) $b_{n+1} b_n = b_n b_{n-1}$, or (2) $b_{n+1} \ge 2b_n + 1$.
- (b) The condition (2) in (a) holds for infinitely many $n \in \mathbf{N}$.

In section 2 of this paper we determine, given a sequence B satisfying the conditions (a) and (b) above, all A-sequences A such that Y = B (Theorem 2.1). In section 3 we establish how many such A-sequences there are (Theorem 3.5). Fibonacci numbers make their appearance there (after Definition 3.1). For other connections of Fibonacci numbers with the Lemoine-Kátai algorithm we refer to [11] and especially to [12], which also provides part of the motivation for this paper.

2. Determination of All A-Sequences Having a Given Y-Sequence

Theorem 2.1: Let the sequence $B: 0 = b_0 < 1 = b_1 < b_2 < \cdots$ satisfy the conditions (a) and (b) of Theorem 1.2. For the *A*-sequence $A: 1 = a_1 < a_2 < \cdots$, we have Y = B if and only if the following conditions hold:

- (a) $A \cap [b_1, b_2] = \{1, 2, \ldots, b_2 1\}.$
- (b) Let n > 1. If $b_{n+1} b_n = b_n b_{n-1}$, then $A \cap [b_n, b_{n+1}] = \emptyset$.
- (c) Let n > 1. If $b_{n+1} \ge 2b_n + 1$, then $A \cap [b_n, b_{n+1}] = \{a_s, \ldots, a_t\}$, where $a_s < \cdots < a_t$, and
- (2.1) $b_n + 1 \le a_s \le 2b_n b_{n-1}$,
- $(2.2) \quad a_{i+1} a_i \leq b_n, \ i = s, \ \dots, \ t 1 \ (\text{if } t > s),$

$$(2.3) a_t = b_{n+1} - b_n.$$

Proof: The "if" part can be proved in almost exactly the same fashion as the corresponding part in the proof of Theorem 1.2. In fact, we only have to suppress "= 0" on page 16, line 7 in [10]. Notice also that the condition

 $a_s \leq 2b_n - b_{n-1}$

in (2.1) means that (2.2) holds also for i = s - 1. To see this, observe that

$$(2.4) \quad a_{s-1} = b_n - b_{n-1},$$

which follows easily using conditions (a), (b), and (c).

To prove the "only if" part we suppose now that $A: 1 = a_1 < a_2 < \cdots$ is an *A*-sequence such that Y = B. We must prove that conditions (a), (b), and (c) hold. Condition (a) is trivial. Let n > 1 and suppose that

 $b_{n+1} - b_n = b_n - b_{n-1}$.

From our definitions, it follows easily that

 $(2.5) \quad A \cap B = \{1\}.$

Suppose that condition (b) is not true. Then, using (2.5) and B = Y, we would get

 $\{y_n + 1, y_n + 2, \dots, y_n + (y_n - y_{n-1})\} \cap A$

 $= \{b_n + 1, \ldots, b_{n+1}\} \cap A \neq \emptyset,$

and so, by [10, Th. 1.13, p. 13],

 $b_{n+1} \ge 2b_n + 1$,

a contradiction.

1992]

Suppose now that n > 1 and $b_{n+1} \ge 2b_n + 1$. Suppose further that (a) holds and that (b) and (c) hold for all $n' \in \mathbb{N}$, 1 < n' < n if n > 2. We prove that (c) holds for n. Since $b_n + 1 \le b_{n+1} - b_n < b_{n+1}$ and since, by Theorem 1.1, $y_{n+1} - y_n = b_{n+1} - b_n \in A$, we see that

$$A \cap [b_n, b_{n+1}] = \{a_s, \ldots, a_t\}$$

with $a_s < \cdots < a_t$ and $b_{n+1} - b_n = a_h$ for some $h, s \le h \le t$. We must prove that h = t. By Theorem 1.1 and the definition of h, we get

$$a_{h+1} - a_h - 1 \ge b_n.$$

If h < t, then we would get

$$a_{h+1} - a_h - 1 \le b_{n+1} - (b_{n+1} - b_n) - 1 = b_n - 1 < b_n$$

a contradiction. It follows that (2.3) holds.

If we had $a_{i+1} - a_i > b_n$ for some $i, s - 1 \le i \le t - 1$, then we would have $a_{i+1} - a_i - 1 \ge b_n$ and so, by Theorem 1.1,

 $b_{n+1} \leq b_n + a_i < b_n + a_t = b_{n+1}$,

a contradiction. This proves (2.2). Finally, (2.1) follows from (2.5) and the case i = s - 1 above, noticing that using our induction hypothesis we get (2.4) as before. Theorem 2.1 is now proved. \Box

3. The Number of A-Sequences Having a Given Y-Sequence

Suppose that $B: 0 = b_0 < 1 = b_1 < b_2 < \cdots$ satisfies conditions (a) and (b) of Theorem 1.2. Let n > 1 and suppose that $b_{n+1} \ge 2b_n + 1$. Let I(n) be the number of different sequences $a_s < \cdots < a_t$ satisfying conditions (2.1), (2.2), and (2.3). We are going to evaluate I(n). For that, we need the following

Definition 3.1: Let $j \in \mathbb{N}$. Let $u_i^{(j)}$, $i = 1, 2, \ldots$, be such that

$$u_i^{(j)} = \begin{cases} 2^{i-1} & \text{for } i = 1, 2, \dots, j, \\ u_{i-1}^{(j)} + \dots + u_{i-j}^{(j)} & \text{for } i > j. \end{cases}$$

In particular, we have $u_i^{(1)} = 1$, i = 1, 2, ..., and $u_i^{(2)} = F_{i+1}$, i = 1, 2, ... (where F_{i+1} denotes the Fibonacci number).

Lemma 3.2: Let $a, b \in \mathbb{Z}$, $a < b, j \in \mathbb{N}$. The number of all possible sets $\{c_1, \ldots, c_k\}$ (k is not fixed), where

$$a = c_1 < c_2 < \cdots < c_k = b, c_i \in \mathbb{Z}, i = 1, \dots, k,$$

and

.

$$c_{i+1} - c_i \leq j, i = 1, \dots, k - 1,$$

is $u_{b-a}^{(j)}$

Proof: If $b - a \le j$, then any subset of the set $\{a + 1, \ldots, b - 1\}$, arranged as a sequence $c_2 < \cdots < c_{k-1}$, gives rise to a permissible sequence

$$a = c_1 < c_2 < \cdots < c_k = b.$$

There are b - a - 1 members in the set $\{a + 1, \ldots, b - 1\}$. If b - a > j, then c_2 must be one of the numbers a + 1, a + 2, ..., a + j, and we use induction. \Box

Theorem 3.3: Let n > 1 and $b_{n+1} \ge 2b_n + 1$.

(a)
$$I(n) = 2^{b_{n+1}-2b_n-1}$$
, if $2b_n - b_{n-1} \ge b_{n+1} - b_n$.
(b) $I(n) = \sum_{i=q}^{h} u_i^{(b_n)}$, if $2b_n - b_{n-1} < b_{n+1} - b_n$, where

[Nov.

346

ON SEQUENCES HAVING SAME MINIMAL ELEMENTS IN THE LEMOINE-KATAI ALGORITHM

$$g = b_{n+1} - 3b_n + b_{n-1} \text{ and } h = b_{n+1} - 2b_n - 1.$$

(c) In case (b), if $(b_{n+1} - b_n) - (b_n + 1) \le b_n$, then
$$I(n) = 2^{b_{n+1} - 2b_n - 1} - 2^{b_{n+1} - 3b_n + b_{n-1} - 1}.$$

Proof: These results follow easily from Theorem 2.1, the definition of I(n), and the use of Lemma 3.2. \Box

Corollary 3.4: Let n > 1 and $b_{n+1} \ge 2b_n + 1$. We have I(n) = 1 if and only if

(a)
$$b_{n+1} = 2b_n + 1$$
, or

(b) $b_{n+1} = 2b_n + 2$ and $b_n = b_{n-1} + 1$.

Proof: The "if" part is clear. To prove the "only if" part, we suppose that neither (a) nor (b) holds. Then we must have $b_{n+1} \ge 2b_n + 2$.

(1) If $b_{n+1} = 2b_n + 2$, we must have $b_n - b_{n-1} \ge 2$. It follows that

$$2b_n - b_{n-1} \ge b_n + 2 = b_{n+1} - b_n.$$

According to Theorem 3.3, we have

 $I(n) = 2^{b_{n+1} - 2b_n - 1} = 2^{2-1} = 2.$

(2) Let $b_{n+1} \geq 2b_n+3$. If $2b_n-b_{n-1} \geq b_{n+1}-b_n$, then, according to Theorem 3.3, we have

$$I(n) = 2^{b_{n+1} - 2b_n - 1} \ge 2^{3-1} = 4.$$

On the other hand, if $2b_n - b_{n-1} < b_{n+1} - b_n$, then, again by Theorem 3.3,

$$I(n) \geq u_h^{(b_n)} = u_{b_{n+1}-2b_n-1}^{(b_n)} \geq u_{3-1}^{(b_n)} = u_2^{(b_n)} > 1.$$

In the last inequality, we use the fact that $b_n > 1$, which follows from n > 1 , and the proof is complete. \Box

Theorem 3.5: Let $B: 0 = b_0 < 1 = b_1 < b_1 < \cdots$ be an infinite sequence of non-negative integers satisfying the conditions (a) and (b) of Theorem 1.2. Let I(B) denote the number of different *A*-sequences for which Y = B. Then I(B) is finite if and only if there exists $n_0 \in \mathbb{N}$ such that $b_{n+1} \leq 2b_n + 1$ for all $n \geq n_0$. In that case

(3.1)
$$I(B) = \prod_{\substack{1 \le n \le n_0 \\ b_{n+1} \ge 2b_n + 1}} I(n)$$
 [we define $I(1) = 1$].

Proof: From Theorem 2.1 it is clear that I(B) is finite if and only if for some point on we always have I(n) = 1 for n satisfying $b_{n+1} \ge 2b_n + 1$. From Corollary 3.4 we know exactly when I(n) = 1. It remains to observe that condition (b) of Corollary 3.4 can hold for at most one n. \Box

Examples 3.6:

(a) ([10, p. 16], [12, p. 296]) Let B be defined by $b_0 = 0$, $b_{n+1} = 2b_n + 1$, $n = 0, 1, \ldots$. Then $b_n = 2^n - 1$ for every $n \in \mathbb{N}$ and by (3.1) we get I(B) = 1. The only A-sequence A satisfying Y = B is given by $a_n = 2^{n-1}$, $n = 1, 2, \ldots$.

(b) Let us modify the example given above by taking $B: 0, 1, 3, 10, 17, 24, 31, 63, 127, \ldots, 2^n - 1, \ldots$ Using (3.1) and Theorem 3.3 [we can use (b) or (c)], we get I(B) = I(2) = 6. The six A-sequences for which Y = B are given by

1,	2,	4,	5,	6,	7,	32,	64,	,	2″,	• • • •
1,	2,	4,		6,	7,	32,	64,	,	2 ⁿ ,	• • • 9
1,	2,	4,	5,		7,	32,	64,	• • • 9	2 ⁿ ,	,
1,	2,	4,			7,	32,	64,	,	2 ⁿ ,	,
1,	2,		5,	6,	7,	32,	64,	* * * 9	2 ⁿ ,	,
1,	2,		5,		7,	32,	64,	,	2 ⁿ ,	

1992]

(c) We modify the examples given above and take $B: 0, 1, 3, 17, 31, 63, 127, \ldots$. We again obtain I(B) = I(2). This time we have to use part (b) of Theorem 3.3 to calculate I(2). The result is

$$I(B) = I(2) = u_9^{(3)} + u_{10}^{(3)} = 149 + 274 = 423.$$

Acknowledgments

This research was done while I spent the Fall term 1988 at the University of Bergen, Norway. I wish to express my sincere gratitude to Ernst S. Selmer for his interest and for carefully reading the manuscript. I thank NAVF for financial support.

References

- 1. A. S. Fraenkel. "Systems of Numeration." Amer. Math. Monthly 92 (1985):105-114.
- 2. I. Kátai. "Some Algorithms for the Representation of Natural Numbers." Acta Sci. Math. (Szeged) 30 (1969):99-105.
- I. Kátai. "On an Algorithm for Additive Representation of Integers by Prime Numbers." Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 12 (1969):23-27.
- 4. I. Kátai. "On Additive Representation of Integers." Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970):77-81.
- 5. E. Lemoine. "Décomposition d'un nombre entier N en ses puissances n^{ièmes} maxima." C. R. Paris XCV (1882):719-22.
- 6. E. Lemonie. "Sur la décomposition d'un nombre en ses carrés maxima." Assoc. Franc. Tunis 25 (1896):73-77.
- 7. E. Lemoine. "Note sur deus nouvèles décompositions des nombres entiers." Assoc. Franc. Paris 29 (1900):72-74.
- G. Lord. "Minimal Elements in an Integer Representing Algorithm." Amer. Math. Monthly 83 (1976):193-95.
- 9. M. B. Nathanson. "An Algorithm for Partitions." Proc. Amer. Math. Soc. 52 (1975):121-24.
- J. Pihko. "An Algorithm for Additive Representation of Positive Integers." Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes No. 46 (1983):1-54.
- J. Pihko. "On Fibonacci and Lucas Representations and a Theorem of Lekkerkerker." Fibonacci Quarterly 26.3 (1988):256-61.
- J. Pihko. "Fibonacci Numbers and an Algorithm of Lemoine and Kátai." In Applications of Fibonacci Numbers. Ed. G. E. Bergum et al. Kluwer: Academic Publishers, 1990, pp. 287-97.

AMS Classification numbers: 11B37, 11A67

[Nov.

.