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As i t i s wel l known, the equat ion 
(1) X2 + 7/*+ = Zh 

has no solutions in the set of positive integers (one can find this equation in 
a number of sources including Dickson*s History of the Theory of Numbers [2]). 
The equation x2 + y^ - z^ serves as a classic result in the history of diophan-
tine analysis, and one of the first known examples where Fermat!s method of 
infinite descent is employed. 

Therefore, if 777 = 0 (mod 4) and n is even, the equation x2 + ym = z2n has 
no solution in positive integers x, y9 and 3. 

Now consider the diophantine equation x2 4- a2ym = z2n with m even. We will 
show that if a is a positive odd integer and if it has a prime divisor p = ±3 
(mod 8), then the above equation has no solution with (x, ay) = 1 and y odd, 
provided that n = 0 (mod 2). This author has shown in [3] that the equation 
x^ + p^y^ = s2, p a prime with p E 5 (mod 8), has no solution in the set of 
positive integers. It is known, however, that for certain primes of the form 
p = 1, 3, or 7 (mod 8), the latter equation does have a solution over the set 
of positive integers (for fruther details, refer to [3]). 

To start, we have 

Theorem 1: Let a be a positive odd integer with a prime factor p of the form 
p = ±3 (mod 8). Also, let m and n be positive integers with m and n both even. 
Then the diophantine equation x2 + a2ym = z2n with (x> ay) = 1 and y odd has no 
solution in the set of positive integers. 

Proof: Assume (x9 y, z) to be a solution to the equation 

(2) x2 + a2ym = z2n 

with (x, ay) = 1. 
Since m is even, m - 2k, the equation 

(3) x2 + a2y2k = z2n, 
describes a Pythagorean triangle with side lengths x, ayk, and zn. Accordingly, 
there must exist positive integers t and I of different parity, i.e., t + I = 1 
(mod 2), with (£, I) = 1 (t and I relatively prime), such that 

(4) x = 2t£, ayk = t2 - £2, zn = t2 + I2. 
From the second equation of (4), we obtain 

(5) ayk = (t - l)(t + £). 
In view of the fact that the integers t and I are relatively prime and of dif-
ferent parity, we conclude that t - I and t + I must be relatively prime and 
both odd; thus, (5) implies 

(6) t - I = aly\9 t + £ = a2y\ 
with yl9 y2 both odd and (yl9 yQ) = 1 = (a^, a^) and a^a^ = a. 

Equations (6) yield 

ajy\ + a2^2 _ a2^2 " al^l t 2 , I 2 
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and by substituting in the third equation of (4)5 we obtain 

2zn = a\y2k + a2y2k . 

By the hypothesis of the Theorem, n is even, n - 2$, and so we obtain 

(7) 2z™ = a\y2k + a2yf. 
According to the general solution of the diophantine equation 

2Z2 = X2 + Y2 with (X, Y) = 1 

(refer to [2] and also to the Remark at the end of the proof for comment on 
this equation), (7) implies 

(8) zB = P 2 + s2, ^ill\ = P 2 + ITS - s2, a2y2
 = ~p2 + 2rs + s l 

with (p, s) = 1 (and, in fact, P and s are of different parity). 
According to the hypothesis of the Theorem, a = ala2 is divisible by a prime 

p = ±3 (mod 8). Thus, a^ or a2 is divisible by p, say a-, . Then the second 
equation in (8) gives v2 + 2TS - s2 - 0 (mod p); (T + s)2 - 2s2 = 0; and so 

(9) (r + s ) 2 E 2s2 (mod p). 

But s and P + s are relatively prime, since P and 8 are; thus, neither of them 
is divisible by p [by (9)] and so congruence (9) shows that 2 is a quadratic 
residue modulo p, which is impossible according to the quadratic reciprocity 
law and since p = ±3 (mod 8) [recall that p = ±1 (mod 8) iff 2 is a quadratic 
residue mod p] . The argument is identical when a2 is divisible by p; the con-
gruence that yields the contradiction is 

(p + s)2 = 2 P 2 (mod p). 

Remark.: Given two positive integers a and b which are relatively prime, it can 
be shown through elementary means that every solution (with X, J, and Z 
relatively prime) (X, J, Z) in Z, to the diophantine equation 

(a2 + b2)Z2 = X2 + J2, 

must satisfy 

-am2 + 2bmn + an2
 y __ bm2 + lamn - bn2

 7 _ m2 + n2 
X - D , l - D , - D , 

where D is the greatest common divisor of the three numerators and where the 
integers m and n are relatively prime. In the case of the equation 

2Z2 = X 2 + Y2 

we have, of course, a = b = 1; so the parametric solution takes the form 

X = -m2 + 2mn + n2, Y = m2 + 2mn - n2, Z = m2 + n2 

with (X, Y) = 1, (jn9 ri) - 1, and m, n of different parity. If we set a = b = 1 
in the above formulas and require (X, J) = 1, then it is not hard to see that 
D = 1 or 2 according to whether m and n are of different parity or both odd 
with (jn9 n) - 1; but the case D = 2 reduces to D = 1 when w and n are both odd. 
To see this, we may set m = mf ~ n! and n = mr + nf with (jn!, n ; ) = 1 and 777f, 
nf of different parity. By solving the above formulas for mf and nr in terms 
of m and n, substituting for a - b - \ and Z) = 2 in the above formulas, we do 
see indeed that the case (m> n) = 1 and m + n = 0 (mod 2) reduces to that of 
(jn, ri) = 1 and 777 + n = 1 (mod 2) (and so D = 1). 

These elementary derivations of parametric solutions make essential use of 
the fact that the equation (a2 + b2)Z2 = X2 + Y2 is homogeneous. For further 
reading, you may refer to [1], 
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Corollary 1: If a satisfies the hypothesis of Theorem 1, there is no primitive 
Pythagoran triangle (primitive means that any two sides are relatively prime) 
whose odd perpendicular side is divisible by a and whose hypotenuse is an inte-
ger square. 

Proof: Suppose, to the contrary, that there is such a primitive Pythagorean 
triple, say (a^, yl9 z^9 so that x^ 4- y2 = z\9 (3^, y ^) = I, yl odd. Then we 
must, accordingly, have y\ = ay and z^ = z2

 s where y and z are positive inte-
gers. Substituting into the above equation, we obtain x\ 4- a2y2 = s^; since y-, 
is odd, so must be y in view of y^ = ay. But (#]_, y±) = (#l5 ay) = 1, which, 
together with the last equation, violate Theorem 1 for n = m = 2. Thus, a con-
tradiction. 

Comment: It is not very difficult to show that, given any positive integer p, 
there is an infinitude of Pythagorean triangles with a perpendicular side being 
a pth integer power; or with the hypotenuse a pth integer power. A construc-
tion of such families of Pythagorean triangles can be done elementarily and 
explicitly. Specifically, if a and b are odd positive integers which are 
relatively prime, define the positive integers 

M aP + bp
 A w ap - bp , 

M = and N = ; a > b. 

Then the triple (M2 - N2, 2MB 9 M2 4- N2) is a primitive Pythagorean triple such 
that M2 - N2 is the pth power of an integer. That the triple is Pythagorean is 
well known and established by a straightforward computation. To show that it 
is primitive, it is enough to observe that, in view of the fact that a and b 
are both odd (and so are ap and b9), M and N must have different parity (to see 
this, consider ap + bp and ap - bp modulo 4). If p is a prime divisor of M and 
N one easily shows that p must divide both ap and bp, an impossibility in view 
of (a, b) = 1. This establishes that (M, N) = 1. Finally, a computation shows 
M2 - N2 = apbp = (ab)p . 

To construct a primitive Pythagorean triangle whose even side is the pth 

power of an integer, it would suffice to take M = ap and N = 2p~l » bp (or vice 
versa) , with (a, 2? ) = 1, a and 2? positive integers and a odd. Here we assume 
p > 2 (for p = 1 the problem is trivial, in which case one must assume b to be 
even). By inspection, we have (M, N) = 1. And 2MN = 2ap * 2p~lbp = (2ab)p ; the 
triangle (M2 - N2, 2MF, M2 + /I/2) is a primitive one whose even side is a pth 

integer power. 
Now, let us discuss the construction of a primitive Pythagorean triangle 

whose hypotenuse is the pth power of an integer. In the special case p = 2n, 
the following procedure can be applied. We form the sequence 

\XQ9 I/Q, 2 Q ) , ..., \xn, yn, zn) 

by first defining 

x0 = M2
Q - < , yQ = 2M0NQ, zQ = M\ + N2

Q, 

where MQ and NQ are given positive integers, relatively prime, of different 
parity, and MQ > NQ» Then recursively define 

Mt = M\_l - B\_x and Ni = 2Mi_lNi_l, for i = 1, ..., n. 
It can easily be shown by induction that (M^, N^) = 1 and that (xi9 yi , zi ) is a 
Pythagorean triple, where 

It is also easily shown that z^ = s2_-,, which eventually leads to zn = s?n. The 
Pythagorean triple (xn, yn, zn) would then be a primitive one, with zn the pth 
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power of an integer p = 2n. More generally, if p > 2 is any integer, a primi-
tive Pythagorean triangle can be constructed such that the hypotenuse is the 
pth power of a prime p = 1 (mod 4). 

Specifically, if p is any prime such that p = 1 (mod 4), then p = a2 + 2?2, 
where the relatively prime integers a and b are uniquely determined. 

We have 

p2 = p* p = (a2 + b2)(a2 + b2) = (a2 - £ 2 ) 2 + {lab)2; 

one can easily check that a2 - b2 and lab must be relatively prime. Now, sup-
pose that p p _ 1 = M2 + N2, p > 3, for some positive integers M and 71/ such that 
(M, N) = 1. 

We have 

pP = pP-1 . p = (A/2 + # 2 ) ( a 2 + ^2) = (Afi> - 717a)2 + (Ma + 71/2?)2 

= (Mb + Na)2 + (Ma - Nb)2. 

We claim that 

(Mb - Na, Ma + Nb) = I or (Mb + Na, Ma - Nb) = 1. 

For, otherwise, there would be a prime q dividing Mb - 71/a and Ma + il/2? and a 
prime r dividing M2? + Na and Afa + Nb. But then, according to the above equa-
tion, both q and r would divide pp; hence, q ~ v - p . But this would imply 
that p must divide 1Mb, INa, IMa, and 2M>; consequently, p must divide (since p 
is odd) M?, to, Ma, and #&; however, this is impossible by virtue of (M, N) = 
(a, b) = 1. Thus, we have shown that, for given p > 2 and prime p = 1 (mod 4), 
there exist integers M, N, (M, N) = 1 such that pp = M2 + N2. Then the desired 
Pythagorean triple is (M2 - N2, 1MN, p p ) . 

Corollary 2: If in a primitive Pythagorean triangle the hypotenuse is an inte-
ger square, then each prime factor p of its odd perpendicular side must be con-
gruent to ±1 modulo 8. 

Proof: The result is an immediate consequence of Corollary 1. Indeed, if it 
were otherwise, that is, if the odd perpendicular side y had a prime factor 
p = ±3 (mod 8), then by setting y = py\, we would obtain 

xl + p2 . yl = s2s With (x9 -py^) = 1. 

But z = R2 by hypothesis, and so the last equation produces 

x2 + p2y\ = i?4, 

which is contrary to Corollary 1 with a = p. 

Theorem 2: Let m be a (positive) even integer, m = Ik, with fc odd, k > 3, and 
n even. Also, let a be an odd positive integer that contains a prime divisor 
p = ±3 (mod 8), and assume that b is a non-/cth residue modulo a, while 2 is a 
fcth residue of q, where q is some prime divisor of a; b some positive integer 
relatively prime to a. Moreover, assume that each divisor p of a/qe, where qe 

is the highest power of q dividing a, is a kth residue modulo q. Then the 
diophantine equation 

b2xm + a2ym = z2n\ (bxk)2 + (ayk)2 = (sn) 2 

has no solution in positive integers x, y, z with (bx, ay) = 1. 

Proof: By Theorem 1, there is nothing to prove when y is odd. If, on the other 
hand, y is even and x odd, with (bx, ay) = 1 and b2xm + a2ym = z2n, we see that 
bxk, ayk, and zn form a primitive Pythagorean triple, where k = ml2. In that 
case, of course, bx is odd and ay is even, and so we must have 
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(10) bxk = M2 - N2, ayk = 2MN, zn = M2 + N2 

with {My N) = 1 and M, # being positive integers of different parity. 
Let q be the prime divisor of a, as stated in the hypothesis. The second 

equation of (10) shows that q must divide M or N. Certainly the above coprime-
ness conditions show that q does not divide bx* On the other hand, by virtue 
of the fact that k is odd, we have (~\)k = -1. First, suppose M = 0 (mod q) . 
Then, if qe is the highest power of q dividing a, then since (M, /!/) = 1, the 
second equation in (1) shows that qe divides M; and 

N = ^ p 2 f
5 

where p is a divisor of a/qe and the exponent / equals 0 or k - 1, depending on 
whether N is odd or even, respectively. Thus, 

N2 = N2kp2» 22^; 

but p is a /cth residue of q by hypothesis; hence, so is p2. Also 2k~l is a fcth 

residue of q, since 2 is (by hypothesis) and 2 • 2k~l = 2k. Consequently, N2 

is a fcth residue and since (-1)^ = -1, the first equation in (10) clearly 
implies that b is also a kth residue of q9 contrary to the hypothesis. 

A similar argument settles the case N E 0 (mod q). 

Example: Take k = 3, and so /?? = 6, p = 29, g = 31, £ = 1, and a = p • ̂  = 899; 
then p E 5 (mod 8) and the cubic residues of 31 are ±1, ±2, ±4, ±8, and ±15; 
p = 29 is a cubic residue of q. Thus, if b £ ±1, ±2, ±4, ±15 (mod 31), the 
diophantine equation (bx^)2 + (899i/3)2 = z1* has no solution over the set of 
positive integers. 

Corollary 3 (to Th. 2) : Let a, b9 and k be positive integers satisfying the 
hypothesis of Theorem 2. Then, there is no primitive Pythagorean triangle with 
one perpendicular side equal to a times a kth integer power, the other b times 
a kth power, and the hypotenuse a perfect square. 

Proof: Apply Theorem 2 with m = n = 2. We omit the details. 
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