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PROBLEM PROPOSED IN THIS ISSUE 

H-474 Proposed by R. Andre-Jeannin, Longwy, France 

Let us define the sequence {£/„} by 

U0 = 0, U, = \, Un = PU„_x-QU„_2, neZ, 

where P and Q are nonzero integers. Assuming that Uk ^ 0, the matrix Mk is defined by 

Mk= — 
Uk 

k>i 
KiQkl1 -QkU,_kJ 

where / = -^/(-l). 

Express in a closed form the matrix Mn
k, for n > 0. 

Reference: A. F. Horadam & P. Filipponi. "Choleski Algorithm Matrices of Fibonacci Type and 
Properties of Generalized Sequences." Fibonacci Quarterly 29.2 (1991): 164-73. 

SOLUTIONS 

How Many? 

H-456 Proposed by David Singmaster, Polytechnic of the South Bank, London, England 
(Vol. 29, no. 3, August 1991) 

Among the Fibonacci numbers, Fn, it is known that: 0, 1, 144 are the only squares; 0, 1, 8 are 
the only cubes; 0, 1, 3, 21, 55 are the only triangular numbers. [See Luo Ming's article in The 
Fibonacci Quarterly 27.2 (1989):98-108.] 

A. Let p{m) be a polynomial of degree at least 2 in m. Is it true that p(m) = Fn has only finitely 
many solutions? 

B. If we replace Fn by an arbitrary recurrent sequence fn, we cannot expect a similar result, 
since fn, can easily be a polynomial in n. Even if we assume the auxiliary equation of our 
recurrence has no repeated roots, we still cannot expect such a result. For example, if 

A = 6 / ^ - 8 / ^ , f0=2,f = 6, 
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then 

fn=2n+4", 
so every fn is of the form p(m) = m2 +m. What restriction(s) on fn, is(are) needed to make 
/„ = p(m) have only finitely many solutions? 

Comments: The results quoted have been difficult to establish, so part A is likely to be quite 
hard and, hence, part B may well be extremely hard. 

Solution by Paul S. Bruckman, Edmonds WA 

To simplify the problem somewhat, we assume that (/„)J=1 is an increasing sequence of posi-
tive integers, and that the /w's satisfy a homogeneous linear recurrence of order d (d>2). 
Furthermore, we assume that the roots of the characteristic equation of fn are distinct. Let these 
roots be denoted by zy, j - l,2,...,<i, with \zx\< \z2\< •-• < \zd\. Then constants cij exist such that 

o) / i .=E a /* ;> /i=0,1,2,.... 
7=1 

We shall also suppose that the sequence (/?(«))* is an increasing sequence of positive integers 
from some point on. Let e denote the degree ofp (e>2). Then constants bj exist such that 

(2) p(z) = fjbJzJ. 

Under these assumptions, we shall prove the following 

Theorem: fn - p{mn) for infinitely many n, where the m^s are positive integers, if and only if 
fn - p(z") for all n. If these conditions are met, we must also have: 

(i) p(0) = 0; (iii) zx is an integer > 1; 
(ii) d = e; (iv) z}.= z{, j = 1,2, ...,d. 

Proof: If fn = p(z") for all n, clearly fn = p(mn) for infinitely many n, with mn -z\. Conditions 
(i), (ii), (iii), and (iv) must then follow. 

Conversely, suppose /„ = p(mn) for infinitely many n, for some sequence {mn)™=l of positive 
integers. Then, for some subsequence (^)J=1 of positive integers, we must have 

(3) Lk=P(mnk\ k = \,2,.... 

Given any e + 2 consecutive elements nl+t,n2+t, ...,ne+2+t (t = 0,1,2,...), we may form the 
(e + l)th divided difference ofp with respect to mn , m„ , •••,mne+2+t • Since p is a polynomial, 
this expression must vanish. \Thus Ae+lm^+j, mn^,..., /̂ „e+2+/ (p) = 0, or 

e+2 

(4) 5Xr/>KJ = 0> t = 0,1,2,..; 
k = \ 

where 
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e+2 

(5) %=nK-\J • 
Then, 

e+2 e • e e+2 

IXrI>/KJ =Z*>Zc^K+<) =0-
£=1 ;=0 7=0 fc=l 

Since this is true for all 7 > 0, and the bys are assumed not to all equal 0, it follows that 
e+2 

(6) 5 > * . r K J =0, / = 0,1,2,..., /=0 , l , . . . , e . 

On the other hand, due to (3), we also have the following: 
e+2 e+2 d d e+2 

Jfc=l fc=l ; = 1 7 = 1 fc=l 

Again, since this is true for all t > 0, and all the a-'s are assumed not all equal to 0, we must have: 
e+2 

O) 5X,* ;* + '=o , f = o,i,2,..., j = i,2,...,d. 
k=l 

Comparing (6) and (7), since these are true for all t > 0, the two expressions must be identically 
equal. Therefore, the following is implied: 

(8) bQ = 0; d = e; (mnJ=z^<, f = 0,1,2,..., j = l,2,,.,d. 

We see that (8) implies conditions (i)-(iv) of the Theorem. As a result, we have: 

(9) fnk=Mk\ * = 1,2,... . 
Thus, 

d 
Jnk 

Using the same argument as before (with k replacing t), it follows that 

(10) aj=bj9 j = l,2,...,d. 

Therefore, for all n, 

or 
(11) f„ = ptf),n = 0,\,2,.... 

Note that mn - z\ for all n\ since the mn's are to be integers, it must follows that zx is an integer. 
Also, since (#0J=1 is increasing from some point on, we must have zx>\\ in fact, (w^)*=1 is 
increasing for all n. This completes the proof of the Theorem. 
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We can now readily dispose of the problem. Since Fn = S'^tf1 - f5n) = 5~*[(-l)"/rn-j3n], 
we see that Fn cannot be expressed as a polynomial in /3n (nor, indeed, is /? greater than 1, must 
less an integer). Therefore, the equation 

0 2 ) Fn=P(mn)> where deg(/?) > 2, 

necessarily has only a finite number of solutions, for all acceptable given polynomials/?. 
The conditions sought for part B of the problem are those imposed by the conditions of the 

Theorem. Unless fn = p(z") for all n, where zx is an integer greater than 1, the equation 
/„ = p(jnn) m u s t n a v e a finite number of solutions. 

Note that the conditions of the Theorem are satisfied by the example cited in part B, with 
mn =2\ zx = 2, p(z)=z2 +z. 

True or Not? 

H-457 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
(Vol 29, no. 3, August 1991) 

Let f{N) denote the number of addends in the Zeckendorf decomposition of N. The 
numerical evidence resulting from a computer experiment suggests the following two conjectures. 
Can they be proved? 

Conjecture 1: For given positive integers k and n, there exists a positive integer nk (depending 
on k) such that f(kFn) has a constant value for n > nk. 

For example, 

24FW = Fn+6 + F„+3 + Fn+l + F„_4 + Fn_6 for n > 8. 

By inspection, we see that nx = 1, nk ^J2 for k = 2 or 3, n4 - 4 and nk - 5 for 5,< k < 8. 

Conjecture 2: For k > 6, let us define (i) ju, the subscript of the smallest odd-subscripted Lucas 
number such that k < L and (ii) v, the subscript of the largest Fibonacci number such that 
k > Fv + Fv_6. Then, nk - max(//, v). 

Solution by Paul S. Bruckman, Edmonds, WA 

We suppose n > 2. As we know, any natural number u has a unique Zeckendorf representa-
tion (Z-rep. for short) which is given by: 

(1) w = ^ ^ . F / 5 where 0} = 0 or 1, 0j0J+l = O, j = 2, 3, . . . , r - 1, and 0r = 1. 

We shall show that Conjecture 1 is true, Conjecture 2 false. Moreover, the following "observa-
tions" are the correct ones for nk. nx = 2, nk - 4 for 2 < k < 4, nk = 6 for 5 < k < 11, nk = 8 for 
12 < k < 29, etc.; in general: 

(2) nk - 2m + 2, where m is determined by Z^^j < k < Llm+X, m - 1, 2,. . . . 

Therefore, 

(3) ^ = 1 + / i , where // is as defined by the proposer. 
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To prove the assertions in (2) and (3), it will suffice to prove (4) and (5) below. 
(4) Given k such that L2m_l <k<Llm, then for all n>2m+2 there exists a Z-rep. for kFn 

given by: 
2w-l 

kF„ = £ ^Fn+J, where 6%, = C - i = 1. 
j=-2m 

(5) Given k such that Llm <k<L2nH.i9 then for all n>2m+2 there exists a Z-rep. for kFn 

given by: 
2m 

kF- = X0fF„ + y > where ^ = C = l. 
j=-2m 

In these expressions, the 0^)!s are dependent on k but not on n. In the sequel, we shall frequently 
employ sums of the type 

For brevity, we shall denote such a sum by S(r, s), If we wish to emphasize that 0 ^ = 1, we 
shall use the notation S(r, s); similar notation makes the symbols £(>, s) and S(r_, 5) self-explana-
tory. Of course, all such sums are understood to be Z-reps. Some preliminary lemmas are needed 
to prove (4) and (5). 

Lemma 1: 

(6) (i)2F„ = Fn+1+Fn_2, (n)3Fn = Fn+2 + F„_2, (iii) 4F„ = Fn+2 + F„ + Fn_2. 

We omit the proof, as this is readily verified. Note that the right member of the expressions 
in (i)-(iii) are Z-reps., with r = -2, and are therefore valid for all n>4. Since f(kFn) = 2, 
k = 2,3, and/(4F„) = 3 for all n > 4, it follows that nk = 4 for k = 2,3,4. Of course, Fn = Fn 
for all ?2 > 2, so nx -2. 

Lemma 2: 

W ^Irrfn ~ ^n+2m + K-2m • 

This is also readily verified. Note that the right member of (7) is of the form S(-2m,2m), 
and is in fact the unique S(-2m9 2m) of minimum length. Thus, f(L2mFn) - 2 for all n > 2m + 2; 
hence, nr = 2m + 2. 

Lemma 3: 
m 

W ^2/w+l A? ~ 2 ^ ^n+2j ~ A?+2w+2 + A i - 2 m - 2 ~ A?+2w ~ A i - 2 m • 
j=-m 

We omit the proof, leaving it as an exercise. Note that Lim+X = Lim+2- L^^ which leads to 
the second relation in (8), using Lemma 2. The sum in (8) is a Z-rep. of the form S(-2m, 2m) „ 
valid for all n > 2m + 2. Hence, f(L2m+lFn) = 2m-f 1 for all w > 2m + 2, and ^r = 2m + 2. 
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We now proceed to the proof of (4) and (5), by induction on m. Let T denote the set of all 
positive integers m for which (4) and (5) are both true. (4) is true for m = 1 (k = 2), and (5) is 
true for m = l (k = 3,4), by Lemma 1. Therefore, leT. Suppose 1, 2, ..., msT (the inductive 
hypothesis). We break-up our proof into six subcases: 

Cascl. Suppose 5F2m < k < 1^^. Then L2n^l < k - Z ^ < L^. Using (4) (supposed true 
for m), we have: 

2m-l 

(k - L2m+1)Fn = £ ®TFn+j for all n > 2m + 2. 
j=-2m 

Then, by Lemma 3, 
kFn = S(-2m, 2 IH-1 ) + F„+2m+2 + Fn_2m_2 - F„+2m - F„_2m 

= S(-2m + 2, 2nLzl) + F„+2m+l + F„_2m_2 

= S(-2m-2,2m_+l), for all n>2m + 4, 

which is the statement of (4) for m + 1. 

Case2. Suppose IL^ <k <5F2m. ThenZtol_2£*-£toH.1S.Z2M_1. Using (5) for m-\, 

(k - L,^ )FV = S(-2m + 2,2m - 2) for all n > 2m. 

Then, by Lemma 3, 
kFn = S(-2m±2,2m-2)+JF„+2m+2 + F„_2m_2 -JF„+2ffl -F„_2m 

= S(-2m±l, 2m - 2 ) + F„+2m+1 + iv2m_2 

= S(-2m-2,2m + 1), for all w > 2m + 4, 

which is the statement of (4) for m + ,1, 

Case 3. Suppose L , ^ <A: <2L,m. ThenZ^,, <k-Llm <L2m. By (4), form, 

(A--i^,)Fn = S(-2m, 2m-I) for all «>2m + 2. 

Then, by Lemma 2, 
£F„ = S(-2m, 2m-1) + FB+2m +F„_2m 

= S(-2m + 2,2m - 3) + 2Fn_2m + F„+2M_! + F„+2m 

= S(-2m + 2,2m - 3) + F„_2m+l + Fn_2m_2 + Fn+2m+1. 

If ^ 2 = 0. then 

# r = 1S'(-2m±J, 2m+ 1) + ^„_2m_2 = S(-2m-2.2m +1). 

If ^ 2 = 1. then ^ 3 = 0, and 

£F„ = S ^ m + 4,2m - 3) + F„_2m+2 + F„_2m+l + F„_2m_2 + F„+2m+1 

= S(-2m + 4,2m+ 1) + F„_2m_2 + F„_2m+3. 
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Since 6^kJ+l = 0^_3 = 1, we must have O^f = 0 for at least one j with -m + 2 < 7 < m - 3, and cer-
tainly C ) - 4 - = ^ 2 = C ) = 0- T h u s> kF, = S(-2m + 2r +1, 2m +1) + iy2f f l_? for some r > 0 , 
which i m p l i e s ^ = S(-2m-2, 2m + 1) for all ft > 2m + 4. This is the statement of (4) for m +1 . 

Combining cases 1, 2, and 3, we see that if mL2m+x < k < F2mJt2 •> then the assertion of (4) for 
m +1 is valid. Thus, m e T implies (4) for m +1. 

Case 4. Suppose L2m+2 <k< 2Llm+x. Then L ^ < k-I^m+x < I^m+X. By (5), form, 
(k - L2m+x)Ffl = S(-2m, 2m) for all ft > 2m + 2. Then, by Lemma 3, 

kFn = S(-2m, 2m) + F„+2m¥2 + Fn_2m_2 - Fn+2m - Fn_2m 

• = £ ( -2m + 2, 2 m - 2 ) + Fn+2m+2 + F„_2m_2 

= S(~2m-2, 2m + 2) for all ft > 2m + 4, 

which is the statement of (5) for m +1. 

Case 5. Suppose 2L2m+l<k <5F2m+l. ThznL2m_x<k-Llm+2<L2m.. By (4), for m, 
(k - Lim+iWn = S{-2m, 2m-1) for all ft > 2m + 2. Then, by Lemma 2, 

£F„ = S(-2m, 2m -1 ) + F„+2w+2 + iy 2 m _ 2 

= S(-2m-2, 2m_±2) for all ft > 2m + 4, 

which is the statement of (5) for m +1. 

Case 6. Suppose 5F2m+l <k< Z^2+3. ThenZ^, < £ - L ^ < Z ^ . Then, using (5), for m, 
(& - L2m+2)Fn = iS\-2m, 2m) for all ft > 2m + 2. Then, by Lemma 2, 

&F„ = S(-2m, 2m) + F„+2wri.2 + F„_2w_2 

= S(-2m-2, 2m+ 2) for all ft > 2m + 4. 

This is the statement of (5) for m +1. 

Combining cases 4, 5, and 6, we see that if L2m+2 <k < L2m+?) and m eT is assumed, then (5) 
holds for m + 1. Combining this conclusion with the conclusion of case 3, we see that m GT 
implies (m +1) e T. Since 1 e T, the proof of (4) and (5) by induction is complete. 

These relations, in turn, imply the truth of the original assertions [(2) and (3)]. For (4) and 
(5) they may be combined as follows: 

(9) Given k such that L2m_x < k < L2m+l, then for all ft > 2m + 2, 

kFn = S(-2m, 2m), and 0% + C - i = 1-

We see from (9) that nk = 2m+ 2, where 2m +1 = //, as defined by the proposer. This proves (3). 
Q.E.D. 

Editorial Note: Russell Hendel's name was omitted from the list of solvers of H-453. 
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