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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A7+2 ~ A?+i+ A? > A ) = A L\ = 1. . • 

Also, a = (l + V5) /2 , jff = ( l - V 5 ) / 2 , Fn = ( a " - / T ) / V 5 , andLn = an+j3\ 

PROBLEMS PROPOSED IN THIS ISSUE 

B-730 Proposed by Herta Freitag, Roanoke, VA 

For n > 0, express the larger root of x2 - Lnx + (-1)" = 0 in terms of a, the larger root of 
x2-x-K-iy>o. 
B-731 Proposed by H.-J. Seiffert, Berlin, Germany 

Evaluate the determinant: 

lF° 
\F2 

Generalize. 

B-732 Proposed by Richard Andre-Jeannin, Longwy, France 

Dedicated to Dr. A. P. Hillman 

Let (wn) be any sequence of integers that satisfies the recurrence 

where p and q are odd integers. Prove that, for all n, 

Wn+6^Wn (mod 4). 
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B-733 Proposed by Piero Filipponi, Rome, Italy 

Write down the Pell sequence, defined by P0 = 0, Px = 1, and Pn+2 = 2Pn+l + Pn for n > 0. 
Form a difference triangle by writing down the successive differences in rows below it. For 
example, 

0 1 2 5 12 29 70 169 ••• 
1 1 3 7 17 41 99 

0 2 4 10 24 58 
2 2 6 14 34 

0 4 8 20 
4 4 12 

0 8 
8 

Identify the pattern that emerges down the left side and prove that this pattern continues. 

B-734 Proposed by Paul $. Bruckman, Edmonds, WA 

If r is a positive integer, prove that 

L5r^L5r.x (mod5r). 

B-735 Proposed by Curtis Cooper & Robert E. Kennedy\ Central Missouri State Asylum for 
Crazed Mathematicians, Warrensburg, MO 

Let the sequence (yn) be defined by the recurrence 

yn+l = %yn + 2 2 j v i " 1 9 0 J V 2 + 2 8 J V 3 + 987JV_ 4 " 700^_5 -I652yn_6 + I652yn_7 

+ 700yn_s-987yn_9-28yn_l0+l90y„_u-22yn_n-8yn_l3 +yn_l4 

for n > 15 with initial conditions given by the table: 

n 
T~ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

yn 
1 
1 
25 
121 
1296 
9025 
78961 
609961 
5040025 
40144896 
326199721 
2621952025 
21199651201 
170859049201 
1379450250000 

Prove that yn is a perfect square for all positive integers n. 
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SOLUTIONS 

A Sum Involving F\ 

B-703 Proposed by H.-J. Seiffert, Berlin, Germany 

Prove that for all positive integers ft, 

k=\ 5 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

Our solution will use the following known result (see Identity I39 on page 59 of [1]): 

U\ p4
 = Elm ~4(-l)mFm 

5 
To establish the desired result, it is sufficient to show that 

n p\ F2 , -4" 
y 
^ 4k 5 . 4 » fc=l 

From (*), we have 

£4* £ 5-4* 5£ 4fc 4*-1 

v y 
l V i _ F 2 

> 4" 2 , v y 
(by telescoping) 

F 2 , - 4 " 
2' 
5.4" 

TTze proposer gave the generalization: 
-2 An r?2 n pl , -An pj-

Z An-k pA _ fm2tt+l___ 2m 

k=l 

for all positive integers m and n. The proof is similar. No reader gave any generalizations 
involving L4

k. Apparently there is no closed form for TPk=iF\ or even Y?k=lF k. For which 
constants a, c, r can Hl=ic F\ be expressed in closed form? 

Reference: 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Santa Clara, CA: The Fibonacci 

Association, 1979). 

Also solved by Paul S. Bruckman, Herta T. Freitag, C Georghiou, Russell Jay Hendel, Hans 
Kappus, Graham Lord, Ray Melham, Blagoj S. Popov, Sahib Singh, and the proposer. 

Products of Terms of the Form ax2 + by2 

B-704 Proposed by Paul S. Bruckman, Edmonds, WA 

Let a and b be fixed integers. Show that if three integers are of the form ax1 -\-by2 for some 
integers x and y, then their product is also of this form. 
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Solution by Ray Melham, University of Technology, Sydney, Australia 

By expanding both sides, it is seen that 

(axf + by\)(cD% + byl)(ay% + by]) 

= 0(0x^X3+bxtf^ +bylx2y3-byly2x3f+b(axlxzy3 -ax1y2x3-aylx2x3-byly2y3f. 

This proves the result. 

Flanigan notes that the above identity holds in any commutative ring with identity. The proposer 
showed that the product of two integers of the form ax2 + by2 can be written in the form 
X2 + abY2 by means of the identity 

(a$ +by2
l)(ax2

2 +by2) = (axlx2 +byly2)2+ab{xly2 - x2yx)2. 

He then showed that the product of a number of the form (ax2 +by2) and a number of the form 
X2 +abY2 can be written in the form (ar2 +bs2) by means of the identity 

(ai^ + bv2)(u2 + abv^) - a(uxu2 +bvlv2)2 +b(u2vl -au^)2. 

Also solved by F. J. Flanigan, C. Georghiou, Russell Jay Hendel, Hans Kappus, H.-J. 
Seiffert, and the proposer. Most of the solutions were similar to that given above. 

An Application of a Series Expansion for (arcsinx)2 

B-705 Proposed by H.-J. Seiffert, Berlin, Germany 

(a) Prove that Y — ^ - = iL. 

(b) Find the value of X F?" -
- 1 n 2 ' 2 " 

Nearly identical solutions by Russell Eider, Northwest Missouri State University, Maryville, MO; 
C. Ceorghiou, University ofPatras, Patras, Greece; Hans Kappus, Rodersdorf Switzerland; and 
Bob Prielipp, University of Wisconsin, Oshkosh, WI. 

We start with the known result (see [1], [2], or [3]): 

Y s , = 2(arcsinx)2 

which converges for |x|< 1. In particular, for x = a / 2 and x = /? /2 , we have 

A a2" J . a\2
 A A J32n J . p ^ 

> -—7—r- = 2 arcsin — and > — 7 — ^ = 2 arcsm — 

Now, from problem B-674 [FQ 29.3 (1991):280], we know that cos^/5•= a/2 and cos3W5 
J3/2. This implies that 
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Thus, 

.3K . (K KX In a , . 
sin — = sin = cos— = — and sin 

10 U S) 5 2 
. a 3K t . B K 

arcsin — = — and arcsin — = . 
2 10 2 10 

n\ . ( K 3K\ 3 K B 
— = sin \- cos— = —. 
10 J I 2 5 J 5 2 

Therefore, 

(a) 

and 

(b) 

^2n 

n=\ In 

In 

= 2 3/r 
10 

K 

10 5 

In 
2_ 03K 

110 
K 

10 
4V5^_ 

125 

References: 
1. Bruce C. Berndt, Ramanujaris Notebooks, Part 1 (New York: Springer Verlag, 1985, p. 262. 
2. I S . Gradshteyn & I. M. Ryzhik, Tables of Integrals, Series and Products (New York: Aca-

demic Press, 1980), p. 52. 
3. L. B. W. Jolley, Summation of Series, 2nd ed. rev. (New York: Dover, 1961), p. 146, series 

778. 
Also solved by Paul S. Bruckman and the proposer. 

An Exponential Inequality 
B-706 Proposed by K. T. Atanassov, Sofia Bulgaria 

Prove that for n > 0, m 
K+e 

\An 

>K. 

Solution by Wray Brady, Chapala, Jalisco, Mexico 
Let 

k = KC 

K+e 

1.4 

We note that a « 1.618 and k « 1.694, so that a< k. Furthermore, since col and - l < / ? < 0 , 
we have \j3n |< 1 < an for n > 0. Thus, 

Vs VI 
77*e proposer also sent in several other inequalities involving Euler's constant and Catalan's 
constant; however, they were all of the form kn > Fn where k was some constant larger than a. 
The conclusion then follows similarly from the fact that Fn < oP. Gilbert showed by taking limits 
that a is the smallest number with this property. In other words, if Fn< kn for all n> 0, then 
k> a. Several respondents noted the stronger inequality, Fn < cP~l (see page 57 of [1]). 
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Reference: 
1. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section—Theory and Applications 

(Chichester: Ellis Horwood Ltd., 1989). 

Also solved by Charles Ashbacher, Glenn Bookhout, Paul S. Bruckman, Joseph E. Chance, 
C Georghiou, Peter Gilbert, Pentti Haukkanen, Douglas E. Lannucci, Russell Jay Hendel, 
Bob Prielipp, Mike Rubenstein, H.-J. Seiffert, Lawrence Somer, Ralph Thomas, and the 
proposer. 

Simple Pythagorean Triple 

B-707 Proposed by Herta T. Freitag, Roanoke, VA 

Consider a Pythagorean triple (a, b, c) such that 
n 

a = 2 Z^ 2 a n d c = Fm+i, n>2. 
7 = 1 

Prove or disprove that b is the product of two Fibonacci numbers: 

Solution by H.-J. Seiffert, Berlin, Germany 

From equations (I3) and ( I n ) of [1], we have a-2FnFn+l and c- F2
+l+F2. Since, in a 

Pythagorean triple, b2 -c2 -a2, we find that 

" ~ AJ+I ~ A? — \rn+l - Pn)(Pn+l +Pn) = rn_xbn+2, 

which shows that b is always the product of two Fibonacci numbers. 

Reference: 
1. Verner E. Hoggatt, Jr., Fibonacci and Lucas Numbers (Santa Clara, CA: The Fibonacci 

Association, 1979). 

Also solved by Charles Ashbacher, M. A. Ballieu, Wray Brady, Scott H. Brown, Paul S. 
Bruckman, Joseph E. Chance, C Georghiou, Russell Jay Hendel, Joseph J. Kostal, Bob 
Prielipp, Sahib Singh, Lawrence Somer, Ralph Thomas, and the proposer. Many of the solu-
tions were similar to the featured solution. One solution was received that did not contain the 
solver fs name. 

Exponential Summation 

B-708 Proposed by Joseph J. Kostal, University ofLllinois at Chicago, JL 

00 i^ f _ 9^ J 
Find the sum of the series ]T *—j -

k=\ 6 

Solution 1 by Glenn Bookhout, North Carolina Wesleyan College, Rocky Mount, NC 

We use the well-known generating functions for Fn andZ,„ (see page 53 of [1]). They are 
given by the equations 

00 t 
Z,rkfk 

and 
(0 E^*-,-,- ,* 

k=0 I I I 
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00 1 — t 

(2) I V " 
Since 

*=o \~t-t2 

lim —— = a 
k^oo Fk 

by formula (101) of [1], the power series (1) converges for \t\< 1 / a by the Ratio Test. Similarly, 
since 

lim —— = a 
£->*> Lk 

the power series (2) also converges for 11\ < 1 / a. 
Substituting 1/2 for t in power series (1) gives 

00 77 

0) I $- = 2. 

Substituting 1/3 for / in power series (2) gives T^=0(Lk 13k) - 3 so 

It follows from equations (3) and (4) that 

^ 3kFk-2kLk 
JL, rk L 

k=l 6 

Seiffert and Bruckman proceeded similarly, but used the power series 

^ r k f(l + 2f) , , _! 
it=i i - r - r 

Several readers blindly substituted values into equations (1) and (2) without first noting the 
radius of convergence of these series. 
Reference: 
1. S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section—Theory and Applications 

(Chichester: Ellis Horwood Ltd., 1989). 

Solution 2 by C Georghiou, University of Pair as, Greece 

We have the following (converging) geometrical series: 

3kak _ a _A ^ 3kflf° _ fi 
k=l 

—;— = and > , -
k=l 6k 2-a t 6k 2-P 

Using the Binet form, Fk = (of - fr)l (a-p), we get 

"a p ^3kFk_ 1 
*=i ^ a-fi 2-a 2-p = 2 

where we have simplified by using the identities a+P= 1 and a/?= - 1 . 
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In the same way, from 

a X 2k ak 

and £ 2kj3k 

k=l 3-/? 
and the Binet form, Lk = ak +ft, we get 

= 1. 
00 r%k J a B 

k=i 3-a 3-fi 

Therefore, the given sum evaluates to 2 - 1 = 1. 

Solution 3 by W. R Spickerman, R N. Joyner, & R L. Creech (jointly), East Carolina 
University, Greenville, NC 

oo jj oo r 

L**i = l 5 - and S2 = £ £ . 
j f c = l fc=l J 

Both series are seen to converge by the Ratio Test. Hence, the series consisting of the differences 
of successive terms of these series converges to S1-S2. That is, 

f 3kFk-2kLk _ 
Lmmi r k L~i ryk X - W Q 

k=\ ° k=l z k=l J i § - i #=*.-**• 
Multiplying the series for Sx by 1, 1/2, and 1/4, respectively, we find that 

V 2 4 ±k-£3 F, oo i 

1 ^ - J 2 <t-i • ^ - 2 ) -

fc=3 

Since the Fibonacci sequence satisfies the recurrence Fk = Fk_1+Fk_2, the summation in this last 
equation is 0. Therefore, 

1 
Sx 

Fx+F2_2 
4 L 4 

so Sx = 2. Similarly, 
5 _2Ll+L2 _5 
9 2 9 9 

so ^ = 1. Hence, the desired sum is Sx - S2 - 2 -1 = 1. 

Redmond generalized by showing that for sequences defined by Pn- aPn_1 - bPn_2 and Qn = 
aQn-\ -hQn-i (with Q2 * 4b), and real numbers A, B, andC, we have 

f AkPk+BkQk^A 
2 . Ck | 
k=0 

cQ{C-AP) + Cl(C-Aa) d^C-Bfi + d^C-Ba) 
(C-Aa)(C-AJJ) (C-Ba)(C-Bj3) 

where a and J3 are the roots of the characteristic equation, x2 -ax+b = 0, chosen so that 
a-j3= ^a2 -4b and with initial conditions such that the Binet forms are Pn - cQan+cxpn and 
Qn-d0an"rdlfin. The series converges if maxQAa/ C\,\AJ3/ C\,\Ba/C\,Bfi/ C\) < 1. 

Also solved by Wray Brady, Scott H. Brown, Paul S. Bruckman, Joseph E. Chance, Russell 
Euler, Herta T Freitag (2 solutions), Douglas E. lannucci, Russell Jay Hendel, Bob Prielipp, 
Don Redmond, H.-J. Seiffert, Sahib Singh, Ralph Thomas (2 solutions), and the proposer. 
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