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1. INTRODUCTION 

The golden ratio <f> - (V5 +1) / 2 is mathematically ancient (see [3] for example), while both <f> 
and its square root are of historical architectural significance,l and are therefore points of contact 
between the "two cultures." (Compare the cultural and historical approach to the theory of 
numbers in [12].) It is pleasing that (f) and v^ have a further relationship in terms of continued 
fractions. The formula 

(i) ^ = i + J__L . . . 
i+ i+ 

is very familiar and it will be proved below that 
1 1 1 

w y v 2 + 2;+ 2 + 2/+ 2 + 2/ + 
where / = v - 1 . A similar result is 

(3) VTT772-l(V5+2)1/2
+-/(V5-2)1/2=l(l + /) + ̂  -

w 2 2 2 1+/+ !+/• 

^ h e golden ratio, or as Kepler, following Luca Pacioli [11], called it, the "divine proportion," and also its 
square root, are related to two of the most famous buildings of all time, the Parthenon at Athens and the Great 
Pyramid, respectively. 

The golden rectangle is exemplified by the face of the Parthenon ([7, pp. 62 and 63]; [13, p. 139]). The 
Parthenon was built only about half a century after the death of Pythagoras so the choice of ^, if it was deliberate, 
might well have been influenced by the Pythagorean philosophy, for $ occurs conspicuously in the theory of the 
pentagram, which was the badge of the Pythagoreans [7, p. 28]. 

Reference [4, p. 162], refers to the "perfect phi pyramid" whose square base is 2 by 2 units, the length of the 
apothem (the segment from the apex to the midpoint of a side of the base) is fc and the height is V .̂ Gardner says 
"Herodotus [the 'father of history'] was the first to suggest (c. 500 B.C.) that the area of the face of the Great 
Pyramid [of King Khufu (also called Cheops) at al-Jiza (Giza)] is equal to the square of the pyramid's height." 
This is another way of suggesting that the Great Pyramid is a perfect phi pyramid. But Gardner has now informed 
me that Fischler (1991), in a forthcoming article, has argued that the source of the alleged interpretation of 
Herodotus's wording goes back only to 1859. Herodotus's wording was seemingly incorrect. Nevertheless, 
according to [8] the measurements of the base are, in feet, 755.43, 756.08, 755.08, and 755.77, with an average of 
755.59, while the height is 481.4 feet, so the ratio of the height to half the base is close to 1.274, whereas ^0 = 
1.2720. The deviation from the perfect phi pyramid is much too small to be discernible by eye and small enough to 
be due to erosion. The Egyptian architect, two thousand years before Herodotus was born, might well have aimed 
at a perfect phi pyramid. Maybe the architect's plans will eventually be found entombed with his mummy. 
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The left sides of (3) can also be expressed as 

(3a) !{(l + 0V^ + (l-/)/V4 
We will see, in a corollary to Theorem 3, that there is another close relationship between (2) and 
(3). 

Some related "complex Fibonacci and Lucas numbers" will be investigated.2 

A condensed version of this work was published in [5]. 

2. PROOFS OF THE CONTINUED FRACTIONS 

To prove (l)-(3), and similar results, we can make use of the following special case of a 
theorem given, for example, by [6, p. 146]. 

The numerator pn and denominator qn of the nth convergent (n = 1, 2, 3, ...) of 

(4) A + — — -

are given by 

(5) Pn=K+2, <ln=F
n+l 

where 

(6) Fn = {x"-?)l{x-y) 

and 

(7) x = - ( ^ + V^2+4), y = ~(A-^A2+4), 

which are the roots of x2 - Ax - 1 = 0. Of course xy = - 1 . 

Reference [6] assumes that A is an integer. But everything in the (inductive) proof of the 
theorem in [6] is also applicable if A is any nonzero real or complex number and, in particular, 
when A = a + ib where a and b are integers, that is, when A is a Gaussian integer. 

It follows from the theorem that the infinite continued fraction (4) is equal to x if \x\>\y\ and 
to y if |.y|>|x|. If A is a positive integer, as in (1), then |x|>|^| and the continued fraction 
converges to x. The convergence is fast when \y I x\ is small. 

For the sake of simplicity, let us consider the special case where A-a^-ia where a is a 
positive integer. Then 

(8) x = — la + ia + ^4 + 2ia2 j , y = —la + ia- V4 + 2/a2 j , xy=-l, 

2Complex continued fractions can be used to solve problems in the theory of Gaussian integers similar to 
those solved for integers by using ordinary continued fractions. For example, one can solve a complex form of 
Pell's equation at least sometimes. This is shown, among other things, in my Technical Report 91-2 which, 
however, contains several incomplete proofs and conjectures. 
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where V denotes the complex square root with positive real part. By means of de Moivre's 
theorem (anticipated by Roger Cotes), and some trigonometry, we infer that 

(9) 

2x = a + /a + i(V4 + a4 +2) + i(^4 + a4 -2\ [ 

2y = a + ia-l^4 + a4 +2) +/(V4 + a4 - 2 ) [ 

(Note the checks that xy = - 1 and (x-y)2 = 4 + 2ia2.) It is straightforward to show that \x\ > \y\ 
by calculating 12xf -\2yf. Therefore, 

(10) ~N4 + a4 +2) +-N4 + a4 -2) ~{a+ia) + . 
2 V ; 2V 1 2 a + ia+ a + ia + 

Equations (2) and (3) are the special cases a = 2 and a=\. 

3. COMPLEX AND GAUSSIAN FIBONACCI AND LUCAS NUMBERS 

Let us write 

(11) F^=^p-, L^ = ? + rf ( £ * ! 7 , £ i 7 = - l ) 

where n is any integer (not necessarily positive) and £ and 77 might be complex (in which case we 
can think of F^n and L^n as complex Fibonacci and Lucas numbers). Note that 

F^=(-irlF^n, L^n = (-l)"Lln. 

The ordinary Fibonacci and Lucas numbers are Fn - F^n, and Ln - L^n. 

Theorem 1: The sequences {F^n} and {L^n} (n- 2 , -1 ,0 ,1 ,2 , . . . ) satisfy the recurrence 
relations 

(12) ^ = ( £ + 7 7 ) ^ + ^ - 1 
and 

The proofs are left to the reader. 

Vajda [13, pp. 176-84] lists 117 identities satisfied by the ordinary Fibonacci and Lucas 
numbers. Most of these identities apply equally to F^n and L^n and can be readily proved straight 
from the definitions (11). 

Theorem 2: A necessary and sufficient condition for F^n and L^n to be Gaussian (or natural) 
integers for all n is that £+ rj should be a Gaussian integer (or a natural integer, respectively). 

Proof: That the condition is necessary is obvious because £+77= L^x = F^2. That the condition 
is also sufficient follows inductively, both for positive and negative n, from the recurrence 
relations (12) and (13) because F^0, F^{, L^0, andZ^j are Gaussian integers, namely, 0, 1, 2, 
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and £+ 77, respectively, and because the recurrence relations (12) and (13) work backwards as 
well as forwards. 

In this paper we will be mainly concerned with the case in which £+ rj-a + ia where a is a 
positive integer, especially the cases a = 1 and a = 2 with which we began in the Introduction. 
Then ^ = x and r\-y where x and y are defined by equations (8) or (9). We write Fxn- F^a) 

and L - L^\ but when a is held fixed in some context we usually abbreviate the notations to 
Fn and Ln. We call F J ^ a n d Z , ^ Gaussian Fibonacci and Lucas numbers. Also we write 
Fn - fn+ if^ and Ly,=£n+i£f

ri to show the real and imaginary parts Some numerical values are 
listed in Tables I and 2 for the cases a = 1 and a = 2. These tables can be generated from the 
recurrence relations 

(14) F0=0, F, =1 , Fn+2={a + ia)Fn+x+Fn 

and 

(15) L0 = 2 , Li= a + ia, Ln+2 = (0 + #a)Zll+1 + Ln 

where n is any integer, positive, negative, or zero. 
Greater generality would be possible by writing (a + ib)Fn+l +(c + id)Fn on the right of (14) 

where a, b, c, and d are integers [and similarly for (15)], but simplicity is also a virtue, and there is 
plenty to say about the special case of F^a) and L^. 

Individual values of Fn and Ln. can be computed from the formulas 

n ind-iy/ _ - 1 -in{&+n)-iy/ 
(16) F„ = r e / S ,mdL„=r"eine

 + r-"e-'"^\ 
V 2 ( 4 + a 4 ) 

where 

2r = [(a + x ) 2 + ( a + J ) 2 ] ' / 2 , 

0- arctan , y/- arctan(<5/ y), 
[a + rj 

where 
\l/2 s- to o\l/2 o tA , „4\ l /2 r = (P+2)iU, s=(p-2)il1, p=(4+ay 

The notations r, 0, y/, J3, y, 8 are provisional and are introduced here only to simplify the 
printing of the formulas for Fn and Ln. and to make them easier to program. (I used a hand-held 
calculator, an HP15C.) In spite of the heirarchy of square roots, Fn and Ln. are, of course, Gaus-
sian integers, a fact that acts as an excellent check on computer programs. 

The tables can be used for checking and guessing various properties of the Gaussian 
Fibonacci and Lucas numbers. In this section I give a small selection of the most easily proved 
properties. 

The first few properties resemble formulas (1.0.14.16)—(10.. 14.9) of [6] and are almost as easy 
to prove as in the real case if one holds in mind that xy = - 1 and, for (19) and (21), that 
(x-y)2 = 4 + 2/a2. We have 
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(17) 2rm+n — rmLn+rnLm, 

and in particular, 

(18) F2n = F„Ln; 

(19) Z*-(4 + 2/a2)F„2 = ( - ! ) % 
(20) F^-F„_{Fnn={-\r\ 

(20k) F„2-F„+kFn_k = (-irkFk
2, 

(21) L2
n-Ln_lLn+l=(-iy(4 + 2ia2). 

Two similar formulas (see [13, formulas (11) and (17c)]), convenient for "leaping ahead," are 

(22) F2n+l = F2
+l+F2 

and 
(23) L2n = L2

n+(-\rl2. 

A couple of results, corresponding to Theorem 179 of [6], and which readily follow inductively 
from the recurrence relations (14) and (15), are 

(24) (F„,Fn+l) = l, (Ln,Ln_l) = (2,a), 

meaning, for example, that Fn andFw+1 have no common factor other than the units ±1 and +/'; 
and, for all r and n, 

(25) Fn\Frn 

(meaning that Fn "divides" Frn). But the proof of (25) given by [6] for ordinary Fibonacci 
numbers does not extend so easily as for (17)-(24). Instead, the proof in [13, pp. 66 and 67] 
extends immediately, and has the merit of expressing Frn/Fn explicitly in terms of Lucas numbers, 
in fact as a linear combination. For example, 

(26) FjFn = L2n +(-1)", FjF„ = L4n +(-l)"JL2„ + 1. 

Several surprising formulas can be obtained by the methods of [1], For example, 
, ^ 1 1 1 1 , 2 
(27) — + — + — + — + --- = <y + l + 

Fx F2 F4 Fs a + ia 
and 
(28) A + ^ 3 _ + A. + ... = _;;. 

77 T7 T? 
1 3 r9 r21 

4. A RELATIONSHIP BETWEEN THE SEQUENCES {I™} AND 0^} 

Theorem 3: 

(29) 4 2 ) = / w 4 2 forall/i, 

where the vinculum indicates complex conjugacy. 
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Proof: (29) is true when n = 0, and when n=\, because 
Lf = 2 while Lf = 2 

4 2 ) = 2 + 2/, 4 1 ) = 0 + 0 2 + 2 = 2 + 2/, i 4 1 ) = 2 + 2/ = 42)-

So an inductive proof will follow if we can show that the sequences 
{42)}and{^:„} satisfy the 

same recurrence relation, where Kn = /'" 4« Ŷ definition 

The recurrence relation satisfied by L^ is, of course, 

^ = ( 2 + 2 0 ^ + ^ . 

To obtain the recurrence relation satisfied by {Kn}, note first that 
A>+2 ~ 4,2 A> ~ 4™~2 

which follows readily from (11). It is stated in [13, formula (17a)] for ordinary Lucas numbers, 
but it is equally clear for complex Lucas numbers and, in particular, for Gaussian numbers. On 
putting m = 2n we get, again in particular, 

^2h+2 ~ L2 L2n - L2fl_2 = (2 + 2i)L2n - L2n_2. 

Therefore, 

2̂«+2 _ ( 2 2z)Z,2w L2n_2. 

Multiply by in+l to get 
i : w + 1 = / ( 2 - 2 / ) ^ - / X _ 1 

= (2 + 2 / ) ^ , + ^ ! 
so the sequence^} does satisfy the same recurrence relation as {L^} as required. 

A more direct but slightly messy proof can be obtained from equation (8). Note that Z(
w

2a) * 
in 4"} unless a = 1. 

Corollary to Theorem 3 

(30) 1-i- l l 
2 

= 2 + 2/4-
2 + 2/+ 2 + 2/' + 1-/+ 1-/ + j 

Proof: From the theorem, we have 

(3D i^L^=L^/L^. 

Now, in the theorem at the start of Section 2, take A = 2 + 2i [when x is given by (9) with a = 2]. 
Then the continued fraction (4) equals 

lim (p„/q„) = lim(x"+2 -yn+2)I(xn+l - / + 1 ) = x (because |*|>b|) 
= l im(x"+ 1+jw + 1) /(x"+/) = lim 4 2

+ \ /4 2 ) 

so the right side of (31) tends to that of (30). Again, in (4), take A = 1 + /' to find that 
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1+7 
1+7 + 1 + 7 + 

Therefore, 
f 

1 + 7+- 1 1 

= Bm(ZS1/41)) = lim(/^2/z£i1).' 

/(I) r(l) \ 2 

V 
and hence, 

1 + 7 + 1 + 7 + 

(1) 
= l i m ^2±I.^Z±2. = l J m ±«±2_ 

r(l) rd) r(D 

1 - 7 + -
1 + 7 + 1 + 7 + : lim i Z & / 4 " . 

so the left side of (31) tends to that of (30) and this completes the proof. 
Equation (30) was discovered by the method shown above. A less interesting proof can be 

obtained from (2) and (3) or (3 a). 

5. CONGRUENCE PROPERTIES 

Hardy & Wright [6, p. 149] prove that every ordinary (rational) prime divides some ordinary 
Fibonacci number (and therefore an infinity of them). To prove similar results we need to recall 
that a prime Gaussian integer a+i/3 (with a(5^ 0) can be defined by the property that a2 +01 is 
either 2 or an ordinary prime congruent to 1 modulo 4. For any such ordinary prime p, the 
corresponding Gaussian prime is unique up to conjugacy or multiplication by a unit (a power of/). 
This beautiful and famous theorem is proved, for example, in [10, p. 128]. Denote one of the 
Gaussian primes that corresponds top by pG and its complex conjugate by pG. Then, of course, 

(32) PGPG = P-

Using this notation we have the following divisibility result, the proof being an elaboration of that 
of Theorem 180 in [6]. 

Definition: We call a number pure if it is either purely real or purely imaginary. 

Theorem 4: Let a be fixed and let p = 1 (mod 4) be a rational prime, not a factor of 4 +a4. 
Then, 

(33) (i) F,2
s l (mod/>); 

(This, of course, makes an assertion about both the real and imaginary parts of F2.) 

(34) (ii) 

(35) (iii) \F/ = 

Fp is pure, modulo p\ 

= +1 
1 4 + a 4 ^ 

P J 
(the Legendre symbol is not 0 because/? does not divide 4 + a ); 

(36) (iv) p divides \F x\2 or\Fp+l\2 or both; 

(37) (v) pG (and^G) divides either F x orFp+l but not both apart from the uninteresting 
case in which/? divides a. 
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Thus every Gaussian prime divides some Gaussian Fibonacci number [and therefore, by (25), an 
infinity of them]. 

(vi) For n>2 wehaveL2„ =2 (mod2"). 

(vii) For n > 2 we have Fn = 2 (mod 2") 

Before proving this theorem, let us look at some numerical examples deduced from Tables 1 
and 2 combined with formulas (18), (22), and (23). These examples are shown in Table 3. Note, 
for example, that this table confirms Part (iii) of the theorem in that 4 +14 and 4 + 24 are squares 
(quadratic residues) modulo 29 but not modulo 13, 17, or 37. 

TABLE 1. Values of Fn andLM when a = 1 

n 

~-T 
0 

1 

j 2 

1 3 
4 

5 

6 

7 

8 
9 

10 

11 

12 

13 

14 

15 

/ 

1 
0 

1 

1 

1 

0 

-3 
-9 

-19 

-32 
-43 

-39 

5 

128 

377 

783 

1305 

/' 
0 
0 

0 

1 

2 
4 

6 

7 

4 

-8 

-36 

-87 

-162 

-244 
-278 

-145 
360 

e 
n -1 
2 

1 

2 

1 

-2 
-9 

-22 

-41 

-62 

-71 

-38 

89 

382 
911 

1682 

2511 

n 
-1 

0 

1 

2 

5 

8 

11 

10 

-1 

-32 
-95 

-198 

-331 

-440 

-389 

82 

1375 

n 

~W 
17 
18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

J n 

1728 

1513 

-367 

-5495 

-15,744 

-32,267 
-53,177 

-69,371 

-58,464 

21,693 

235,305 

656,909 

1,328,896 

2,165,489 
2,781,855 

2,249,009 

-1,161,856 

Jn 
1520 

3608 

6641 

9882 

11,028 

5166 

-16,073 

-64,084 

-149,528 

-272,076 

-399,911 

-436,682 

-179,684 

712,530 

2,698,335 

6,192,720 

11,140,064 

ln 
2818 

1361 

-3982 

-16,111 

-37,762 

-68,921 
-101,638 

-111,641 

-47,678 

176,841 
678,602 

1,564,201 

2,822,398 

4,110,751 

4,414,498 

1,619,999 

-7,803,902 

V n 
3968 

8161 
13,490 

17,669 

15,048 

-5045 

-58,918 

-165,601 

-336,160 

-549,439 
-708,758 

-579,595 

275,848 

2,518,651 

6,905,250 

13,838,399 

22,363,648 
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TABLE 2. Values of Fn and Ln when a = 2 

Fn=fn+if; Ln=tn+Wn 

n 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

fn 
1 
0 
1 
2 
1 

-12 
-63 

-186 
-319 

104 
3137 

f 
J n 0 

0 
0 
2 
8 

20 
24 

-58 
-464 

-1624 
-3504 

4 
-2 

2 
2 
2 

-10 
-62 

-198 
-382 

-82 
2818 

13,490 

-2 
0 
2 
8 

22 
32 

-38 
-440 

-1682 
-3968 
-3982 

n 
10 
11 
12 
13 
14 
15 
16 
17 
18 

20 

fn 
13,386 
34,625 
45,532 

-82,303 
-754, 290 

-2,740,095 
-6,150,960 
-5,063,807 
28,365,202 

540,965,316 

f 
J n -2358 

18,552 
103,996 
317,608 
574,606 
-41,760 

-4,989,104 
-22,321,888 
-59,760,494 

112,389,732 

in 
37,762 
58,918 

-47,678 
-708,758 

-2,822,398 
-6,905,250 
-7,803,902 
22,214,242 

~K] 
15,048 

101,638 
336,160 
678,602 
275,848 

-4,414,498 
-22,363,648 
-64,749,598 

TABLE 3(i), a = 1. Values modulo p 

p 
13 
17 
29 
37 

FP 
- 5 / 

4/ 
1 

-6 / 

n i 
i 
i 
i 

I^I2 

- i 
- i 

i 
- i 

*Vi 
-2 + 3/ 

( 3 + / ) ( 4 + 0 
0 

(2 / -3)(1 +f i ) 

•*V+i 
3-2/ 

(3-0(1 + 40 
1 + / 

(4 + 3 / ) ( l -6 / ) 

TABLE 3(ii), a = 2. Values modulo p 

p 
13 
17 
29 
37 

FP 

5/ 
-4 / 

1 
6/ 

K 
i 
i 
i 
i 

l^vl2 

- i 
- i 

i 
- i 

^ - i 

3(2 + 30 
-3(1 + 4/) 

0 
3(-13 +140(1 + 6/) 

fp+i 

-2(2-3/) 
(1 + 0(1-4/) 

2(1+/) 
1-6/ 

Proof of Theorem 4: From (7), where A - a + ia, we have (by the binomial theorem) 

2p~lF=2p-\xp-yp)/(A2+4) 1/2 

pAp~l +[ H ^ " 3 ^ 2 + 4) + [ P W 5 ( ^ 2 +4)2 + --- + (^2+4)(^1)/2 

v 3 ; v5y 
E E ( , 4 2 + 4 ) (/>-l)/2 (mod/?) since/? is prime. 
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Therefore, 
Fp = {A2 +4)(p~l)/2 (mod/?) (by Fermat!s theorem, not the "last" but not least) 

= (4 + 2ia2 ) ( ^ 1 ) / 2 - 2 ( ^ 1 ) / 2 (2 + ia2 ) ( ^ 1 ) / 2 . 

Therefore, 

(38) F2 ^2p-l(2 + ia2)p~l ^(2+ia2)p-1 (mod/?). 

and 

(39) \Fpf ^2p-\4 + a4Yp-l)/2 ^ (4 + a 4 ) ( ^ 1 ) / 2 (mod/?), 

again by Fermat's theorem. Part (iii) of the theorem now follows from (39) combined with 
Theorem 83 of [6]. 

From (38) we obtain 

(2 + ia2)F2^(2 + ia2)p 

= 2P + ipa2p (again by the binomial theorem) 
= 2 + ia2 [because/? = 1 (mod4) and is prime]. 

But (4 + a4, /?) = 1 and therefore (2 + ia2 ,/?) = !. Hence, F2 = 1 (mod /?), which is Part (i) of the 
theorem. 

To prove Part (ii), assume that Fp = a+ifi (mod p). Thus F2 = a2 -(? +2iaJ3. But F2 = 1 
and is therefore real, so aJ3= 0. Thus a - 0 or J3 - 0 so F is pure (mod /?). 

Part (i) combined with (20) shows that Fp_xFp+l =0 (mod/?). Since/? is not a Gaussian 
prime, it does not follow that/? divides either F x orFp+l, but Part (v) does follow because we 
must have Fp_xFp+l = 0 (mod pG and also mod pG). [The recurrence relation (14), together with 
Part (i), shows that pG cannot divide both Fp_x and Fp+l when p does not divide a. But 
sometimes both pG and pG divide F u or perhaps both divide F +l, and then/? divides either 
Fp_x or Fp+l but not both.] Then Part (iv) follows from Part (v). 

To prove Part (vi), note that 

L4 = 4(1 - a4 + 2/a2 ) - 2 = - 2 (mod 4) = 2 (mod 4), 

and the result then follows by induction from formula (23). 
To prove Part (vii), we have 

F4=2a[(l-a2) + (l + a2)] = 0 (mod4) 

whether a is even or odd. Then the result follows by induction from (18) combined with Part (vi). 

Lemma: For any integer n, L2n is of the form 2s + 2ti andZ2w+1 is of the form a±ai + 2au+2avi 
where s, /, u, and v are integers. 

Proof: Note first that it is irrelevant whether we take the plus sign or the minus sign. Now 
L0 = 2 and Lx=a + ai, so we can "start" an inductive proof, and we can readily complete the 
induction by means of the recurrence relation (15). 
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Theorem 5: Let/? be an odd (ordinary) prime. Then 
Ln = a + ia (mod p) ifp = 1(mod 4) 

(40) P 

Lp = a - ia (mod p) if p = 3 (mod 4). 

More informatively, 
Z^ = a + ia (modlap) ifp = 1 (mod4) 
Lp=a-ia (mod2qp) if/? = 3 (mod4). 

Proof: Wehzve Lp=xp+yp, so 

2p~lLp = AP+(P)AP-2(A2 +4) + ...+pA(A2 + 4)(p~l)/2 

Now 277-1 = 1 (mod/?), by Fermat's theorem, so 

Lp^Ap (modp) = (a+ ia)(2ia2)(p-l)/2 

: (a + /a) \-W»/2ap-l^(a + iay t(p-l)/2 

again by Fermat's theorem. Formulas (40) are therefore proved ifp divides a, so we shall now 
assume that it does not. Now, by [6, p. 75], we have 

f —1 = 1 if> = ±l (mod8) 

and equations (40) follow readily. But by the Lemma we have Lp-a + ia- M(2a) and (41) 
follows at once because (2a,p) = 1. [X - M(ju) means X = 0 (mod/i).] 

Corollary: (i) Ifp is an odd prime, then 

(42) \Lp\2^2a2 (mod/?). 

(ii) Ifp is an odd prime and a is not a multiple of/?, then \Lp\21(2a1) is an integer and 
is congruent to 1 modulo p. 

Proof: From (41), Lp is of the form a + ai + 2ap(s + it) where s and t are integers. Hence 

| Lp |2 = (a + 2aps)2 + (a + 2<z/rt)2 

= 2a2 (1 + 2/75 + 2pt + 2/? V + 2/?V ) 

and the Corollary follows at once. 

Comment Ifp is an odd number and fails to satisfy any of the conclusions in Theorems 4 and 5, 
then/? is composite, and if it does satisfy the theorems it can perhaps be described as "probably" 
prime or at least as a new kind of "pseudoprime." For example, Ln ^a±ia (modn) for any 
composite n shown in Table 1 or 2. 

Theorem 5 and its corollary are analogous to the theorem that the ordinary Lucas number 
L^p = 1 (mod/?); see, for example, [13, p. 80], where it is mentioned, with a reference, that 
Z^ 705 = 1 (mod 705) although 705 is composite. So the converse of our Theorem 5 is probably 
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false. Anyway, the converse would be too good to be true. It would be interesting to knbw 
whether any parts of Theorems 4 and 5 have "modified converses " 

Theorem 6: Every Gaussian number G = g +/g' (not just the Gaussian primes) divides some 
Gaussian Fibonacci number (apart from F0). (We are still regarding a as fixed.) 

Proof: The sequence of Gaussian Fibonacci numbers (mod G) must be periodic with period no 
more than (gg')2 - 1 . This follows by the argument given, for example, in [13, p. 88] with a 
minor modification to allow for the complexity of G. But 0 is one of the Fibonacci numbers, and 
is divisible by G, and the result follows. 

We next prove two congruence relations needed in Section 6. The first part sharpens Part 
(vi) of Theorem 4. 

Theorem 7: (i) L2„ = 2 (mod2w+2) when n > 3, for all a. 

(ii) Ln = 2 (mod 2n+2) when n > 3, while 1 < a< 5. 

[Part (i) can probably be sharpened, for example, xL^\ = 2 (mod 512), while Part (ii) might be 
true for all values of a.] 

Proof: We have 

L2={a + ia)Ll + LQ-2 + 2ia1 

so, by (23), 

Z4 = L^-2 = 2 - 4 a 4 + 8 / a 2 = ( - l ) a 2 (mod8). 

Therefore, again by (23), 

L8 = L 2 - l = [M(8) + (-l) f l2]2-2 = 2 (mod32). 

Therefore, 

Ll6. = L\ - 2 = [M(32) + If - 2 ̂  2 (mod 64), 

and so on, inductively, giving Part (i). 
To prove Part (ii), note first that it is true for n = 3 and for n = 4 as we can see for a = 1 or 2 

from Tables 1 and 2 and by calculations, not shown here, for a = 3, 4, and 5. We complete the 
proof inductively by noting first that 

^.2«+1 = ̂ ^ i - ( - i r ( ^ + ' 7 ) ( ' « = o,i;2,...) 

as follows easily from (11). On putting £= x and m = 2W_1, we infer that 
Lr+l = L2^ L2„_1+1 - (a + id) (n > 2) 

= 2Z,2B_,41 -(a + ia) (mod2w+1,«>4) [by Part (i)] 
= 2[M(2"-l) + a+ia]-(a+ia) (mod2"+1,w > 4) 

(by the inductive hypothesis) 
= a + ia (mod 2", ft > 4) 

and this completes the inductive proof 
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6. A PEMODICITY PROPERTY ; 

Periodicity properties, modulo a given integer, of ordinary Fibonacci and Lucas sequences, 
are surveyed by Vajda [13, Chapter vil]. Our final theorem reveals a very simple periodicity of 
the Gaussian Lucas sequences at least when a < 6. 
Theorem 8: For 1 < a < 5, the period of the sequence ... L_2, L_x, L0, Lx, L2,... (mod 2", n > 3) 
is a power of 2 not exceeding 2". 

In view of the recurrence relation, in order to prove that 2" is a period it is sufficient to prove 
that Lm = Lm+2„ for two consecutive values of m. By Theorem 7 this is achieved by taking m = 0 
and m = 1. 

The period (that is, the shortest period) must divide any known period and must therefore be 
a power of 2. There seems to be a 'tendency' for the period to be 2", for example, when a = 1 or 
3 the periods modulo 8, 16, and 32 are, respectively, also 8, 16, and 32. But, when a = 2, the 
period modulo 32 is only 8. 

7, LOOSE ENDS 

There are many loose ends in this work. For example, we wondered whether Part (ii) of 
Theorem 7 is true for all values of a, in which case the same is true for Theorem 8. As another 
example, if p = 1 (mod4) and /? > 5, is \F^\y2f always congruent to 0 or ±1 modulo/?? I have 
verified this for a = 1 and 2 and/? < 113, and for a = 3,p < 61. Note that \L^\2 /2, where/? is an 
odd prime, has a tendency to avoid having small factors, where the meaning of small increases 
when/? increases. The values for/? = 3, 5, 7, 11, 13, 17, and 19 are, respectively, 13, 101, 292, 
58741 (prime), 53 x 9257, 34227121, and 185878941. Neither of the last two numbers has a fac-
tor less than 100. (Both are beyond the scope of [9].) It seems reasonable to conjecture that 
when the prime /?—> oo and a^M(p), then the smallest factor of \L^\2 /(2a2) (which is an 
integer by the corollary of Theorem 5) also tends to infinity. The analogous property might be 
true also for the ordinary Lucas numbers L^p. It is possibly significant that 292 divides l ^ l 2 , 
293 divides \F7

(2)\2, and 892 divides \L{£f. ' 

How much of the theory goes through if a + ia is replaced by a + ib throughout? 

But the most interesting question is: Under what conditions is a "pseudoprime" a prime? 

REFERENCES 

1. P. S. Bruckman & I. J. Good. "A Generalization of a Series of de Morgan, with Applications 
of Fibonacci Type." Fibonacci Quarterly 14.2 (1976): 193-96. 

2. R. Fischler. "What Did Herodotus Really Say? or How To Build (a Theory of) the Great 
Pyramid." In Environment and Planning B (in press, 1991). 

3. J. S. Frame. "Geometry, Euclidean." In McGraw-Hill Encyclopedia of Science and Tech-
nology 6 (1960):152-55. 

4. M. Gardner. The Magic Numbers of Dr. Matrix. New York: Dorset, 1985. 

1993] 19 



COMPLEX FIBONACCI AND LUCAS NUMBERS 

5. I J. Good. "Complex Fibonacci and Lucas Numbers, Continued Fractions and the Square 
Root of the Golden Ratio (Condensed Version)." J. Operl Res. Soc. 43.8 (1992):837-42. 
Part of a Festschrift for Steven Vajda. 

6. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Claren-
don, 1938. 

7. H. E. Huntley. The Divine Proportion: A Study in Mathematical Beauty. New York: Dover, 
1970. 

8. T. G. H. James. "Egyptian Art and Architecture, Ancient." Encyclopaedia Britannica 18 
(1988):186-96. 

9. D. N. Lehmer. List of Prime Numbers from I to 10,006,721. Carnegie Institution of 
Washington, Publication No. 165, Washington, D.C., 1914. 

10. W. J. LeVeque. Topics in Number Theory, Vol. 1. Reading, Mass.: Addison-Wesley, 1956. 
11. L. Pacioli. De Divina Proportione. 1509. (Pacioli wrote the first printed book on mathe-

matics: SQQEnc. Brit., 11 t h ed., Vol. 1, p. 618.) 
12. D. Shanks. Solved and Unsolved Problems in Number Theory. New York: Chelsea, 1962-

1978. 
13. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester, Sussex: Ellis 

Horwood, 1989. 

AMS Classification Number: 11B39 

Applications of Fibonacci Numbers 
Volume 4 

New Publication 
Proceedings of 'The Fourth International Conference on Fibonacci Numbers 

and Their Applications, Wake Forest University, July 30-August 3, 1990' 
edited by G.E. Bergum, A.N. Philippou and A.F. Horadam 

This volume contains a selection of papers presented at the Fourth International Conference on Fibonacci 
Numbers and Their Applications. The topics covered include number patterns, linear recurrences and the ap-
plication of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, computer 
science and elementary number theory. Many of the papers included contain suggestions for other avenues of 
research. 
For those interested in applications of number theory, statistics and probability, and numerical analysis in 
science and engineering. 

1991, 314 pp. ISBN 0—7923—1309—7 
Hardbound Dfl. 180.00/£61.00/US $99.00 

A.M.S. members are eligible for a 25% discount on this volume providing they order directly from the 
publisher. However, the bill must be prepaid by credit card, registered money order or check. A letter must 
also be enclosed saying "I am a member of the American Mathematical Society and am ordering the book for 
personal use." 

KLUWER ACADEMIC PUBLISHERS 
P.O. Box 322, 3300 AH Dordrecht, The Netherlands P.O. Box 358, Accord Station, Hingham, MA 

02018-0358, U.S.A. 
Volumes 1 to 3 can also be purchased by writing to the same address. 

20 [FEB. 


