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1. INTRODUCTION 
Hexel and Sachs [3] examined the rfi1 row of Pascal's triangle and worked out formulas for 

the number of occurrences of each residue modulo p, where p is any prime. ¥orp > 3 the formu-
las are very involved. Davis & Webb [1] recently considered the same problem modulo 4, and 
they pointed out that a composite modulus requires an approach different from the one in [3]. To 
date, 4 Is the only composite modulus for which formulas for the number of occurrences of each 
residue have been obtained. It appears to be very difficult to find results of this type for arbitrary 
composite moduli. 

The purpose of the present paper is to extend the results of [1] and [3] to multinomial and 
q-binomial coefficients. Thus, in section 3 we examine the ^-binomial coefficients H , 0 < r <n, 
and determine the number of occurrences of each residue modulo 4. In section 4 we consider the 
same problem modulo p, and we obtain explicit formulas for p = 3. For p > 3, we show how 
formulas can be worked out in terms of the results of [3]. Similarly, in section 6 we examine the 
multinomial coefficients («1? «2, ...,nr) such that nx +n2 + ••• + nr =n, and we find formulas that 
enable us to compute the number of occurrences of each residue modulo 4. In section 7 we 
consider the same problem modulo/?. An explicit formula forp = 3 Is determined, and formulas 
for p > 3 are found In terms of the results of [3]. In sections 2 and 5 we state the basic properties 
of the ^-binomial and multinomial coefficients that, we need, and we also explain the notation used 
in this paper. 

2, g-BINOMIAL COEFFICIENTS^ PRELIMINARIES 
The ^-binomial coefficient is defined by 

(2.1) 
y=i q l 

1 

for q an indeterminate and n a nonnegative integer. When considering M modulo j , for any j , 
unless otherwise stated q will always be a rational number, q~ulv, with gcd(w,v) =gcd(u,j) = 
gcd(v, j) = 1 The g-binomial coefficient Is a polynomial In q, and for q = 1 it reduces to the ordi-
nary binomial coefficient. It is clear from (2.1) that, for r > 0, 

(2.2) 

(2.3) 

n 
r 

n 
r 

= n-\ 
r-\_ 
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n-r 

+ qr ~n-\ 
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As much as possible, we shall use the notation of [1].. Thus, if 
k 

(2.4) « = X ai2' ( e a c h ai ~ ° 0I" X)' 
/=0 

we define 

7=0 

Similarly, we define 

C(»)-tc,, £>(*) = £</„ 
7=0 7=0 

where ct = 1 if and only if a/+1 = 1, a, = 0, and dt = (<z/+1)(tf/). That is, C(«) is the number of "10" 
blocks and D(n) is the number of "11" blocks in the base 2 representation of n. The same 
notation was used in [1]. 

We shall also use the notation 

\"l =7 if and only if r? \ = j (modw) (0<j<w-l), 

and N^w\q;n) is the number of ones, N^w\q;n) is the number of twos, N^w\q;n) is the number 
of threes, etc., in the set 

o l {"}„'-{"}. 
In [2] Fray proved a rule for finding the highest power of a prime p dividing M. The 

following lemma is a special case of that rule. 

Lemma 2.1: help be a prime number and let e be the smallest positive integer such that qe = 1 
(mod £>). Write n, r, and n-r uniquely as 

k 
(2.5) n = a_l-\-e-a = a_l+e^aip1 (Q^a^Ke, 0<af<p), 

7=0 

k 
(2.6) r = b_l+e-b = b_l+eYdbipi {0<b^<e, Q<bt<p), 

7=0 

k 
(2.7) n-r = w_l+e^wipi (0<w_x<e, Q<wt<p). 

7=0 

We can write 
b^+w^ =es0+a_l 

eQ+bQ+w0=pe1+a0', 

£k-i+bk-i+Wk-i=P£k+ak-u 
£k+h+wk=ak> 

with each si - 0 or 1. Then H is relatively prime to/? if and only if si - 0 for each /'. 
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Note that (2.5)-(2.7) are possible by the division algorithm. Also note that whenp = 2, we 
have e = 1 and a_x = b_x - w_x = 0. 

Fray [2] also proved the following useful lemma. 

Lemma 2.2: Let n and r have expansions (2.5) and (2.6). Then 

a - i 

* - i . 
tf„ V «i 

hkh b
k | (mod/?). 

The second congruence of Lemma 2.2 follows from a well-known theorem of Lucas. 
Let aj(p;n) denote the number of g-binomia! coefficients H , r = 0,l,...,n, divisible by 

exactly pJ (that is, divisible by pJ but not by pJ+l). Fray [2] proved that if n has expansion (2.5), 
then 

®o(P',n) = O-i + 1)Oo +1) '•• (% + 1). 
In particular, forp = 2, let 

aj(n) = aj(2;n), 
so 

«o(«) = 2B(n). 
The writer [4] proved that 

(2.8) ax(ri) = 
C | « _ ^ j 2 ^ ) - 1 if ^ 3 (mod4), 

C(n)2B{n)-1 if 9 = 1 (mod 4). 

3. g-BINOMIAL COEFFICIENTS MODULO 4 

We shall use the notation of section 2, and for convenience we let 

Hi-
Nj(n) = N^(q;n). 

Also define 

N(n) = (N1(n),N2(n),N3(n)). 

First we take care of some trivial cases. If q = 0 (mod 4), we see from (2.1) that 

{"} = 1 (r = 0,!,...,») 

l{q = 2 (mod 4), we see from (2.1) that 
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If q = 1 (mod 4), then 

[n\ (n {-}= r l (mod 4), 

and the results of [1] can be used. 
In the remainder of this section we shall assume q = 3 (mod 4). We shall also use the 

notation of section 2. 
We know from (2.3) that 

N2(n) = C\ 

Note that 

c(n-aA = \C{n) if n * 2 (mod 4), 
V 2 ) \c{n)-l if/? = 2 (mod4). 

It is clear from (2.2) that 

<?•*> { " H ^ l K ^ f ; 1 } (m°d4>' 
and the following lemmas are clear from (2.1), (2.5), and Lemma 2.1. 

Lemma 3.1: When k > 1, N(2k) = (2,1,0). 

Lemma3.2: Let n = 2k + L, where 0<L<2k. Then 

{"H (mod2) (£<r<2^) . 

The analogous results for ordinary binomial coefficients are proved in [1]. By (3.1) and 
Lemmas 3.1 and 3.2, we see that the g-binomial Pascal triangle modulo 4 for q = 3 (mod 4) has 
the following form: 

1 
1 1 

101 
1 1 1 1 

1 0 2 0 1 

(2* row) 10... 0 2 0... 0 1 
(2*+lrow) 1 10.. . 0 2 2 0... 0 1 1 

By using (3.1) and comparing this triangle with Pascal's triangle modulo 4 (see [1]), we see 
that the two triangles satisfy the same recursive relations. That is, in Part 1 and Part 2 of [1], we 
can replace (• • •) by {• • •}. We shall not reproduce all those relations here, but we note the follow-
ing. 
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Lemma33: Suppose n = 2k + L, 0<L<2k 

(a) I(L<2k-\thm 

{"} IS < 
ifO<r<L, 

[=0 (mod2) ifL<r<2k. 

(b) l?2k~l<L<2k,iherv 

{"} is < 

= 0 (mod 2) 

If 0 < r < 2 k-i 

+ 2{r_^_x| (mod4) If 2k~l <r<L, 

I f Z < r < 2 \ 

Because of the symmetry of the triangle, I.e., property (2.3), we now have all the information 
we need. 

Recall that D{n) > 0 if and only if the base 2 representation of n has a " 11" block. 

Theorem 3.1 If D(n) = 0, or n = 3 + $rn withD(m) = 0, thenJV1(/i) = 2i?(',) 3ndN3(n) = 0. 

Proof: We use induction on «. The theorem is true for « < 3 ; assume it Is true for all non-
negative integers less than n. If n satisfies the hypotheses of the theorem, then n - 2k + L with 
L < 2k~\ and eitherD(L) = 0orL = 3 + %y with D{y) = 0. Thus, 

Nl(L) = 2B{L) and N3(L) = 0. 

Note that B{n) = 5(Z) +1. We know 

;}-f-0 If 0 < r < Z, 

[=0 (mod2) I fZ<r<2*. 

Since M = l n \ and 2k > nl 2, we have 

Nx(n) = 2NX(L) = 2 ^ and #3(/i) - 0. 

This completes the proof. 

Theorem 3.2: If D(n) > 0 and n * 3 + &w with D(/w) = 0, thenNx(n) = N3(n) = 2B(n)~\ 

The proof of Theorem 3.2 is the same as the proof of Theorem 6 in [1], with (•••) replaced 
by {• • •}. We shall not reproduce It here. 

In summary we have: 

© If D(n) = 0 or n = 3 + Hm with D(m) = 0, then 

N(n) •• _ iB(n) ,c !!z£°.X*<"y\o\ 
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• If D(n) > 0 and n * 3 + 8m with D{m) = 0, then 

2#(«)-i A n~ao V^W-i 2j5(w)~1 f 
N(n) = 

4. g-BINOMIAL COEFFICIENTS MODULO P 

In this section we assume/? is an odd prime and w has expansion (2.5). We shall use the fol-
lowing notation: 

Let Aj be the number of coefficients at (-1 < i <k) in (2.5) that are equal toy. 

Let t be the order of 2 modulo/?, and for m > 0 let t(m) be the smallest nonnegative solution 
x to 2* = m (mod/?), if one exists. 

Recall that N^\q; n) is the number of ^-binomial coefficients M congruent to m modulo/?. 

Theorem 4.1 Suppose n has expansion (2.5) with 0 < a_x < 1 and 0 < at < 2 for each i > 0. 

(a) If 2* = m (mod /?) has no solutions x, then Njf\q; n) = 0. 

(h) If2x = m (mod /?) has solutions, then 

(4.1) N^{q; n) = 2* i^t(mf+jt)2A^m)-Jt, 

where t(m) + st < A^ < t(m) + (s+l)t. 

Proof: We see from Lemma 2.2 that to have M = m (mod/?) we must have h integers / such that 

( j W f ) and 2h=m (mod/?). 

Thus, part (a) is clear. Now 2h = 2t{jn) (mod/?) implies 2h = t(m) (modt), so h = t(m) + jt for 
some j . There are (AA ways to have h terms (f); there are two choices, for each of the remaining 
A^-h terms (f), namely, bt -0 or ft,r =2; there are two choices for each of the Al terms (l

b\ 
namely, bt = 0 or bt - 1. Thus, we have (4.1), and the proof is complete. 

Corollary: If/? = 3 [and thus q = ±1 (mod 3)], we have 

N[3\q;ri) = --2*(3A* +1) and N!?\q;ri) = -.2*(3* -1). 

Proof: Since/? = 3, we have all the hypotheses of Theorem 4.1 with t(l) = 0, t{2) = 1, and t = 2. 
Thus, 

The formula for N^3\q; n) is proved in a similar way, thus completing the proof. 
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Af>(3;») = 

By Lemma 2.2, it is clear that 

l2^>(l;a) if^, = l, 
where a is defined by (2.5) and N^\l; a) is the number of binomial coefficients (f\ that are con-
gruent to m modulo p. Thus, when a_x = 0 or 1, the formulas of [3] can be used to evaluate 
N^i/Z,n) • More generally, define y(r) to be the smallest nonnegative solution to 

\x = m (mod/?). 

Then the following theorem is clear from Lemma 2.2. 

Theorem 4.2: Ifn has expansion (2.5) mdy(r) is defined as above, then 

r=0 

For example, letp = 5 and q = 3 (mod 5), so e = 4. We have 

|X(5)(l;a) if « = 0 (mod 4), 
pJVPOja) i f / i s l (mod 4), 
12#1

(5) (1; a) + 7\ff (1; a) if n = 2 (mod 4), 
[2#1

(5)(l;a) + 2#2
(5)(l;a) ifw = 3 (mod 4). 

Theoretically, then, we can evaluate Njf\q; n) for any q by using Theorem 4.2 and the for-
mulas of [3]. 

For completeness, we note that for p - 2 and q # 0 (mod 2) we have 

^ ( ? ; « ) = K + l)(a1 + l ) - ( a i + l) = 25W, 

where n has expansion (2.4). 

5, MULTINOMIAL COEFFICIENTS: PRELIMINARIES 

The multinomial coefficient is defined by 

(5.1) (Wi,W2> —>«r) = —j 1 7 ( « l + - - + « r = ^ ) -

Obviously (5.1) reduces to the ordinary binomial coefficient for r = 2. In this paper we consider 
(5.1) for all compositions (ordered partitions) of n into r parts. The order of the terms %. . . ,nr is 
important; we are distinguishing between (0,0,1,2) and (1,0,0,2), for example. Note that 0 can 
be one or more of the parts. It is well known that the number of compositions of n into r parts is 

("•'i- . . . . . 
Fray [2] proved the following rule for determining the highest power of a prime p dividing 
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Lemma 5A: Let n have base/? representation 

(5.2) n = ̂ ajP
J' (0<a y < J p ) 

andlet w = wl + n2+--- + /ir. For/ = l,...,r, let ni = Jlkj=0aUj.pJ (0<a ; ; </?). If 

^0+aU+";* + ar>l=/?ffl+alV 

where each £;• = 0,1, ..., o r r - 1 . Then the highest power of p dividing fa,n2, ...,«r) is / , 
where 5= £o + ̂ i + ""'+fifr-i-

We shall use the notation i?(«), C(n), and JD(«) given in section 2. 
Let w have basep expansion (5.2) and let 6^ fa n) be the number of multinomial coefficients 

fa, n2,...,nr) divisible by exactly pJ. The writer [5] proved 

e>(nn>=(\+_v1)('"r
+:r1)-{\+-r1} 

Forp = 2, we have 

(5.3) <%\r;n) = rJ*»\ 

and the writer [4] proved 

(5.4) 0{2\r- n) = C(n)^XB^1 + D(n)(rXB^\ 

For w = 0,1,..., j - 1 , we define N^lfa) as the number of multinomial coefficients (n1? w ,̂ 
..., nr) such that fa, r^,..., nr) = w (mod j). 

6. MULTINOMIAL COEFFICIENTS MODULO 4 

The notation for this section comes from sections 2 and 5. For convenience we shall use 

so that 
(6.1) Nra(n)=6f?\r;n) 
and 

^,o(") = ("+;"1)-^,1(«)-Arr ; 2(«)-^3(«). 

We also define 

By (5.4) and (6.1), the only problem, then, is to find Nrj(n) and JVr 3(«). 

Theorem 6.1: If D(n) = 0, thenN^fa) = r5(w) and Nr^(n) = 0. 
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Proof: Suppose D(n) = 0 and n = nl+n2 +°~ + nr. Tf(nl9n29...,nr)$0 (mod 2), then by Lemma 
5.1 we know if ay; =0 thenayj =0 fori = l,...,r. Also, if aj = 1 thena7j = 1 for exactly one i. 
Since 

(6.2) ft,, *)-(;)(Vl"Tl"' 
and since D(n -nx «,-) = 0 for/ = 1,..., r, we see that none of the binomial coefficients on 
the right side of (6.2) is congruent to 3 modulo 4. Thus, (n^r^, ...,nr) = 1 (mod4), and the 
proof is complete. 

Hence, if D{n) = 0, we have 

The situation is much harder if D{n) > 0. We shall use the following notation: 

[0 otherwise. 
Since 

we have 

^M(") = Z [ / I ( » , 0 - ^ - U ( " - 0 + / 3 ( » , 0 - ^ - U ( » - 0 ] -
/=0 

We refine this in the next theorem by using the facts that if (% T^, ...,nr) # 0 (mod 2), then in 
Lemma 5.1 each st = 0, and 

Theorem 6.2: Let n have base 2 representation (2.4). Then, for r > 3, 

Arr;1(») = ^_1^»)+i+X(^-if("-V3(»,0+I[/i(»,0-/3(»>0K-u("-0, 
i i 

where each sum is over all integers / such that 0<i<n and 

j = Hej2J ( 0 < ^ < ^ ) 

To illustrate Theorem 6.2, suppose 

(6.3) n = 2k-l+2k. 
Then, using Theorem 6.1 and the results of [1], we know f3(n, i) = 1 for i = 2k~l and / = 2k, and 

Nr_u(2k-l) = Nr_u(2k) = r~l 
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Theorem 6.2 gives us 

K,i(") = Nr_u(n) +1 + 2(r -1) - 2(r -1) = Nr_u(n) +1. 

Thus, if»is given by (6.3), we have 

(6.4) NrA(n) = r, Nr^n) = r2-r. 

Now consider 

(6.5) » = 2i+2fc_1 + 2 t ( 0 < s < £ - 2 ) . 

Then, using [1] and (6.4), we have 

fx (n, i) = 1 for i = 2* and / = 2k~l + 2k, 
f3(», i) = 1 for i = 2 M , 2k, 2s + 2fc_1, and 2 ' + 2k, 

_ J ( r - l ) 2 forx = 2i + 2fc-1 andx = 2s + 2*, 
^ U ( r - 1 forx = 2*-1+2*,2',2*-1, and2*. 

Theorem 6.2 gives usNrl(n) = Nr_ll(n) + 2r-1. Thus, if n is given by (6.5), we have 

Nr£n) = r\ Nr<3(n) = r3-r2. 

Using this method on the other cases ofB(n) = 3, we can prove the following. 

Theorem 6.3: Suppose B(n) = 3 and D{n) > 0. Then 

|(r2' w f t V + f 3V'r3 ~r2] ifD(n)=i? 

#r (") = ]) W W - 7 
( r 3 - 2 r 2 + 2 r , C ( / i / 2 V + 2 ^ ^ 2 r 2 - 2 r ] ifD(n) = 2. 

We could next look at the case B(n) = 4 and get similar results. In general, after examining 
the case B(n) =j, we can move to the case B(n) =7 + 1. As j increases, the formulas become 
much more complicated. 

7. MULTINOMIAL COEFFICIENTS MODULO P 

Let /? be an odd prime and recall that N^(n) is the number of multinomial coefficients 
(nx,n1,...,nr) such that (w^w^,...,/^) =m (mod/?). 

Let w have base/? expansion (5.2) and let Aj be the number of coefficients at (0 < at < k) that 
are equal to j . 

We shall use the definitions of t and t{m) given at the beginning of section 4. 

Theorem 7.1: Let « have expansion (5.2) and suppose that 0 < a7 < 2 for each at. Let #2 be a 
positive integer. 

(is) If there are no solutions to 2X = m (mod/?), then#r
(^(ft) = 0. 

(b) If there are solutions to 2X = m (mod/?), then 
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CM) <2<») = ^ | ( , ( m f + j 7 ) Q 
where t(m) + st<A2< t(m) + (s+l)t. 

t(m)+jt 
^A2-t(m)-jt 

Proof: Suppose {nl,n2,...,nr)=m (mod p). Since m > 0, in Lemma 5.1 we must have st = 0 for 
/ = 0,1,..., k -1. In (6.2) we see that each binomial coefficient on the right side will be congruent 
to 2W modulo p for some w > 0, and we must have 

(7.2) h = Z(w) and 2h=m (mod/?). 
Thus, part (a) is clear. We now count the number of ways (7.2) can happen. Pick h of the A2 

rows adding up to 2, and pick two positions in each of these rows for l's. There are i^jX] waYs 

of doing this. In the remaining A^-h rows, pick one position in each row for a 2. There are 
„A,-h ways of doing this. We see from the last part of Lemma 2.2 that when the binomial 
coefficients on the right side of (6.2) are broken down in terms of their coefficients modulo p, 
then we have 

(nlyn2,...,nr) = 2h=m (mod/?). 

As we saw in the proof of Theorem 4.1, h- t(m) + jt for some j , and (7.1) follows. This com-
pletes the proof. 

Corollary: Let/? = 3. Then 

+ \r 

N%(n) = ±.rA> r + (a) 
We now prove a theorem analogous to Theorem 6.2. It follows immediately from 

(/I1,/l2,...,Wr) = ^J(/l2,. . . ,Wr). 

Theorem 7.2 let m be a positive integer and suppose (") # 0 (mod/?). Letg(j) be the smallest 
positive integer such that (n) -g(j) = m (mod p). Then 

<p2(")=I^Lo)("-7X 
J 

where the sum is over ally such that 0<j<n and ("1 # 0 (modp). 
Ifn has the base/? expansion (5.2), then in Theorem 7.2 the sum is over ally such that 

k 

j=TeiPj (o<^<^). 
;=0 
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For example, let p = 5, r = 3, w = 11 = 1 + 2 • 5. Then 

^if? (11) = ^if? (H) + ̂ if? (10) + 7V<f3) (6) + ̂ (f3) (5) + + î <f> (0) 
= 4 + 2 + 0 + 0 + 2 + 1 = 9. 

Similarly, we can show that W$(l l ) = 9. 
Theoretically, then, if we know the values of N^(n)9 we can use Theorem 7.2 to find 

N^(n) for any r. 
For completeness, we can use (5.3) to obtain N™(l) = rB{n). 
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