UNARY FIBONACCI NUMBERS ARE CONTEXT-SENSITIVE

Vamsi K. Mootha (student)

Stanford University, Stanford, CA 94305
(Submitted April 1991)
Moll and Venkatesan showed in [2] that the set of Fibonacci numbers is not context-free. Recall that a language is CF (context-free) if and only if there exists a context-free grammar generating it. It is only natural to ask where exactly in Chomsky's Hierarchy the Fibonacci numbers lie. By the Hierarchy Theorem (Theorem 9.9 of [1]), we have the following proper containments:

```
Regular sets \(\subset\) CFL's \(\subset\) CSL's \(\subset\) RE's
```

RE's (recursively enumerable languages) are defined to be those sets generated by unrestricted grammars. Unrestricted grammars are simply grammars in which all the productions are of the form $\alpha \rightarrow \beta$, where α and β are arbitrary strings of grammar symbols, with $\alpha \neq \varepsilon$. By definition, CSL's (context-sensitive languages) are generated by CSG's (context-sensitive grammars). CSG's are very much like unrestricted grammars, with the added condition that for all productions $\alpha \rightarrow \beta,|\alpha| \leq|\beta|$.

In this paper we offer a CSG G generating the language of unary Fibonacci numbers, $L=\left\{0^{i} \mid i=F_{n}\right\}$, hence demonstrating the title claim. But before doing this, it will prove useful to construct an unrestricted grammar G^{\prime} for L.

THE UNRESTRICTED GRAMMAR G^{\prime}

Formally define $G^{\prime}=\left(V^{\prime}, T, P^{\prime}, S\right)$, where $V^{\prime}=\{S, A, B, C, D, E, F, G, H, J, K, L, M, N, P\}$, $T=\{0\}$, and P^{\prime} is given by the list of productions:

1)	$S \rightarrow 0$	14)	$K C \rightarrow L C 0$
2)	$S \rightarrow A E 0 B 0 C D$	$15)$	$0 L \rightarrow L 0$
3)	$A E \rightarrow A H$	$16)$	$B L \rightarrow B J$
4)	$H 0 \rightarrow F 0$	$17)$	$B J C \rightarrow B M$
5)	$F 00 \rightarrow 0 F 0$	$18)$	$M 0 \rightarrow 0 M$
6)	$F 0 B \rightarrow B F 0$	$19)$	$M D \rightarrow N C D$
7)	$F O C \rightarrow G C 0$	$20)$	$0 N \rightarrow N 0$
8)	$0 G \rightarrow G 0$	$21)$	$B N \rightarrow N B$
9)	$B G \rightarrow G B$	$22)$	$A N \rightarrow A E$
10)	$A G \rightarrow A H$	$23)$	$A E \rightarrow P$
11)	$A H B \rightarrow A B J$	$24)$	$P 0 \rightarrow 0 P$
12)	$B J 0 \rightarrow 0 B K$	$25)$	$P B \rightarrow P$
13)	$K 0 \rightarrow 0 K$	$26)$	$P C D \rightarrow \varepsilon$

Observe that there are two starting productions. Production 1 generates the nonrecursive base cases; production 2 generates all other Fibonacci numbers F_{n}, with $n>2$. In general selection of production 3 eventually leads to a string of the form
(*) $\quad A E 0 \ldots 0 B 0 \ldots 0 C D$.
The 0 's between A and B represent unary F_{n-2}, while those between B and C represent F_{n-1}. Repeated selection of production 3 "increments" (*), while choosing production 23 outputs F_{n} by eliminating the markers.

In summary, productions 1 and 2 enable us to generate either the base or recursive case. Productions 3 through 11 move F_{n-2} into the space between C and D; productions 12 through 22 perform the updating and restoration of the string to the form of (*). Finally, productions 23 to 26 output the answer. It is easily verified that G^{\prime} generates exactly L.

Because G^{\prime} is an unrestricted grammar that generates L, L is recursively-enumerable. Note that G^{\prime} is not a CSG because the left-hand sides of productions 23,25 , and 26 are longer than their right-hand sides.

THE CONTEXT-SENSITIVE GRAMMAR G

We use the method of Example 9.5 of [1] to create a context-sensitive grammar G which mimics G^{\prime}. Instead of the "single" variables of G^{\prime}, we use "composite" variables that combine 0 with each of its possible contexts. For example, the single nonterminal [AE0] replaces the two variable string $A E$ in a particular context.

Formally define $G=(V, T, P,[S])$, where $V=\{[S],[A E 0],[B 0 C D],[A H 0],[A F 0],[A B F 0]$, [0CD], [AB0], [F0CD], [F0], [A0], [BF0], [B0], [GC0D], [C0D], [GC0], [0D], [ABG0], [G0], [BG0], [GB0], [$A G 0$], [C0], [$A G B 0],[A H B 0],[A B J 0],[B K C 0 D],[B K 0],[B J 0],[B K C 0]$, [KCOD], [K0], [KC0], [BLC0], [LC0], [BL0], [L0], [BJC0], [BM0], [M0D], [0MD], [M0], [$O N C D$], [NOCD], [BNO], [0CD], [NB0], [AN0], [N0], [P0], [PB0], [P0CD], [OPCD]\}, and P is given by the following list of productions, which are grouped according to the production of G^{\prime} they mimic:

1)	$[S] \rightarrow 0$	14)	$[B K C O D] \rightarrow[B L C O][0 D]$
			$[K C 0 D] \rightarrow[L C 0][0 D]$
2)	$[S] \rightarrow[A E 0][B 0 C D]$		$[B K C 0] \rightarrow[$ [$2 C 0] 0$
			$[K C 0] \rightarrow[L C 0] 0$
3)	$[A E 0] \rightarrow[A H 0]$		
		15)	[B0][LC0] \rightarrow [BL0][C0]
4)	$[A H 0] \rightarrow[A F 0]$		$0[L C 0] \rightarrow[L 0][C 0]$
			$[B 0][L 0] \rightarrow[B L 0] 0$
5)	$[A B F 0][0 C D] \rightarrow[A B 0][F 0 C D]$		
	$[A B F 0] 0 \rightarrow[A B 0][F 0]$	16)	$[B L C 0] \rightarrow[B J C 0]$
	[F0][$0 C D] \rightarrow 0[F O C D]$		$[B L 0] \rightarrow[B J 0]$
	$[A F 0] 0 \rightarrow[A 0][F 0]$		
	$[B F 0] 0 \rightarrow[B 0][F 0]$	17)	$[B J C 0] \rightarrow[B M 0]$
	$[F 0] 0 \rightarrow 0[F 0]$		
		18)	$[B M 0][0 D] \rightarrow[B 0][M O D]$
6)	$[A F 0][B 0 C D] \rightarrow[A B F 0][0 C D]$		$[M O D] \rightarrow[0 M D]$
	$[A F 0][B 0] \rightarrow[A B F O] 0$		$[B M 0] 0 \rightarrow[B 0][M 0]$
	$[F 0][B 0] \rightarrow[B F O] 0$		$[M 0][0 D] \rightarrow 0[M O D]$
			$[M 0] 0 \rightarrow 0[M 0]$
7)	$[F O C D] \rightarrow[G C O D]$		
	$[F 0][C O D] \rightarrow[G C 0][0 D]$	19)	$[0 M D] \rightarrow[0 N C D]$
8)	$[A B 0][G C O D] \rightarrow[A B G 0][C O D]$	20)	$[0 N C D] \rightarrow[N O C D]$
	$0[G C O D] \rightarrow[G 0][C O D]$		$[B 0][N O C D] \rightarrow[B N O][0 C D]$
	[ABO][G0] \rightarrow [ABG0]0		$[A 0][N B 0] \rightarrow[A N 0][B 0]$
	$0[G 0] \rightarrow[G 0] 0$		$0[N O C D] \rightarrow[N 0][0 C D]$
	[B0][G0] \rightarrow [BG0]0		$[B 0][N 0] \rightarrow[B N O] 0$
	$[A 0][G B 0] \rightarrow[A G 0][B 0]$		$0[N B 0] \rightarrow[N 0][B 0$
	$0[G C 0] \rightarrow[G 0][C 0]$		$[A 0][N 0] \rightarrow[A N O] 0$
			$0[N 0] \rightarrow[N 0] 0$

It is straightforward to see that $S \stackrel{*}{\Rightarrow} \alpha^{\prime}$ (i.e., a string α^{\prime} is derived from S) through G^{\prime} if and only if $[S] \stackrel{*}{\Rightarrow} \alpha$ with G, where α is formed from α^{\prime} by grouping with a 0 all markers (i.e., elements of $\left.V^{\prime}-\{S\}\right)$ appearing between it and the 0 to its left, and also by grouping the first 0 with any markers to its left and with the last 0 any markers to its right; e.g., if α^{\prime} is $A 00 B 0 K C 000 D$, then α is $[A 0] 0[B 0][K C 0] 0[0 D]$. Observe that the right side of every production of G is at least as long as the left side. Clearly, G is a context-sensitive grammar.

Thus, we have
Theorem: L is a context-sensitive language.
Proof: Immediate from construction of G.

REFERENCES

1. J. Hopcroft \& J. Ullman. Introduction to Automata Theory, Languages, and Computation. New York: Addison-Wesley, 1979.
2. R. Moll \& S. Venkatesan. "Fibonacci Numbers are Not Context-Free." Fibonacci Quarterly 29.1 (1991):59-61.

AMS Classification Numbers: 68Q50, 68Q45

