NONEXISTENCE OF EVEN FIBONACCI PSEUDOPRIMES OF THE $1^{\text {st }}$ KIND*

Adina Di Porto
Fondazione Ugo Bordoni, Rome, Italy
(Submitted August 1991)

1. INTRODUCTION AND PRELIMINARIES

Fibonacci pseudoprimes of the $1^{\text {st }}$ kind (1-F.Psps.) have been defined [6] as composite integers n for which the Lucas congruence $L_{n} \equiv 1(\bmod n)$ is satisfied.

The aim of this paper is to establish the following
Theorem: There do not exist even Fibonacci pseudoprimes of the $1^{\text {st }}$ kind.
With regard to this problem, Di Porto and Filipponi, in [4], conjectured that there are no even-Fibonacci pseudoprimes of the $1^{\text {st }}$ kind, providing some constraints are placed on their existence, and Somer, in [12], extends these constraints by stating some very interesting theorems. Moreover, in [1], a solution has been found for a similar problem, that is, for the sequence $\left\{V_{n}(2,1)\right\}$, defined by $V_{0}(2,1)=2, V_{1}(2,1)=3, V_{n}(2,1)=3 V_{n-1}(2,1)-2 V_{n-2}(2,1)=2^{n}+1$. Actu-ally Beeger, in [1], shows the existence of infinitely many even pseudoprimes n, that is, even n such that $2^{n} \equiv 2(\bmod n) \Leftrightarrow V_{n}(2,1) \equiv 2+1=V_{1}(2,1)(\bmod n)$.

After defining (in this section) the generalized Lucas numbers, $V_{n}(m)$, governed by the positive integral parameter m, and after giving some properties of the period of the sequences $\left\{V_{n}(m)\right\}$ reduced modulo a positive integer t, we define in section 2 the Fibonacci pseudoprimes of the $m^{\text {th }}$ kind (m-F.Psps.) and we give some propositions. Finally, in section 3, we demonstrate the above theorem.

Throughout this paper, p will denote an odd prime and $V_{n}(m)$ will denote the generalized Lucas numbers (see [2], [7]), defined by the second-order linear recurrence relation

$$
\begin{equation*}
V_{n}(m)=m V_{n-1}(m)+V_{n-2}(m) ; V_{0}(m)=2, V_{1}(m)=m \tag{1.1}
\end{equation*}
$$

m being an arbitrary natural number. It can be noted that, letting $m=1$ in (1.1), the usual Lucas numbers L_{n} are obtained.

The period of the sequence $\left\{V_{n}(m)\right\}$ reduced modulo an integer $t>1$ will be denoted by $\mathrm{P}_{(t)}\left\{V_{n}(m)\right\}$. For the period of the sequence $\left\{V_{n}(m)\right\}$ reduced modulo p, it has been established (see [8], [13]) that

$$
\begin{align*}
& \text { if } J\left(m^{2}+4, p\right)=1 \text {, then } \mathrm{P}_{(p)}\left\{V_{n}(m)\right\} \mid(p-1), \tag{1.2}\\
& \text { if } J\left(m^{2}+4, p\right)=-1 \text {, then } \mathrm{P}_{(p)}\left\{V_{n}(m)\right\} \mid 2(p+1), \tag{1.3}
\end{align*}
$$

where $J(a, n)$ is the Jacobi symbol (see [3], [10], [14]) of a with respect to n, and $x \mid y$ indicates that x divides y.

[^0]Moreover, it can be immediately seen that

$$
\begin{equation*}
\text { if } \operatorname{gcd}\left(m^{2}+4, p\right)=p,\left[\text { i. e., } m^{2} \equiv-4(\bmod p)\right], \text { then } \mathrm{P}_{(p)}\left\{V_{n}(m)\right\}=4 \tag{1.4}
\end{equation*}
$$

and, if m is an odd positive integer,

$$
\begin{equation*}
\mathrm{P}_{(2)}\left\{V_{n}(m)\right\}=3 ; V_{n}(m) \equiv 0(\bmod 2) \text { iff } n \equiv 0(\bmod 3) \tag{1.5}
\end{equation*}
$$

Note that, according to (1.2), (1.3), and (1.4), the period of any generalized Lucas sequence reduced modulo a prime p is a divisor of $\Lambda(p)=\operatorname{lcm}(p-1,2(p+1))$, that is,

$$
\begin{equation*}
\mathrm{P}_{(p)}\left\{V_{n}(m)\right\} \mid \Lambda(p) \tag{1.6}
\end{equation*}
$$

Finally, observe that, if m is a positive integer such that $m^{2} \equiv-1(\bmod t)$, then t is of the form

$$
\begin{equation*}
t=2^{k} \prod_{j} p_{j}^{k_{j}} \tag{1.7}
\end{equation*}
$$

where p_{j} are odd rational primes of the form (see [8], [14])

$$
p_{j}=4 h_{j}+1, k \in\{0,1\} \text { and } k_{j} \geq 0
$$

In this case, it follows that

$$
\begin{equation*}
\mathrm{P}_{(t)}\left\{V_{n}(m)\right\}=12 \text { and } V_{1}(m) \equiv V_{5}(m) \equiv m(\bmod t) \tag{1.8}
\end{equation*}
$$

2. THE FIBONACCI PSEUDOPRIMES: DEFINITION AND SOME PROPOSITIONS

The following fundamental property of the numbers $V_{n}(m)$ has been established [11]: If n is prime, then, for all m,

$$
\begin{equation*}
V_{n}(m) \equiv m(\bmod n) \tag{2.1}
\end{equation*}
$$

The composite numbers n for which the congruence (2.1) holds are called Fibonacci pseudoprimes of the $m^{\text {th }}$ kind (m-F.Psps.) [6].

First, let us give some well-known results (see [5], [9]) that will be needed for our further work. Let d be an odd positive integer.

$$
\begin{gather*}
V_{2 d}(m)=\left[V_{d}(m)\right]^{2}+2 \tag{2.2}\\
V_{2^{k} d}(m)=\left[V_{2^{k-1} d}(m)\right]^{2}-2 ; k>1 \tag{2.3}\\
V_{h d}(m)=V_{h}\left(V_{d}(m)\right) ; h \geq 1 \tag{2.4}
\end{gather*}
$$

To establish the theorem enounced in section 1, we state the following propositions.
Proposition 1: Let $m=2 r+1$ be an odd positive integer.
If $n=2^{k}(2 s+1),(k \geq 1, s \geq 1)$, is an even composite integer such that $n \equiv 0(\bmod 3)$, then n is not an m-F.Psp., that is,

$$
\begin{equation*}
\text { If } n \equiv 0(\bmod 6), \text { then } V_{n}(m) \not \equiv m(\bmod n) \tag{2.5}
\end{equation*}
$$

NONEXISTENCE OF EVEN FIBONACCI PSEUDOPRIMES OF THE $1^{\text {ST }}$ KIND

Proposition 2: Let $m=2 r+1$ be an odd positive integer.

$$
\begin{equation*}
\text { If } n=2^{k}, k \geq 1 \text {, then } V_{2^{k}}(m) \equiv-1\left(\bmod 2^{k}\right) . \tag{2.6}
\end{equation*}
$$

From this proposition, it follows that

$$
\begin{equation*}
\text { If } k>1 \text {, then } 2^{k} \text { is a }\left(2^{k}-1\right) \text {-F.Psp. } \tag{2.7}
\end{equation*}
$$

Proposition 3: Let $m=2 r+1$ be an odd positive integer.

$$
\begin{equation*}
\text { If } n=2^{k}(2 s+1) \equiv 0(\bmod 3), k \geq 1, s \geq 2 \text {, then } V_{n}(m) \equiv-1\left(\bmod 2^{k}\right) . \tag{2.8}
\end{equation*}
$$

Proof of Proposition 1: If $n \equiv 0(\bmod 6)$, from (1.5) we have

$$
\begin{equation*}
V_{n}(m) \equiv 0(\bmod 2), \tag{2.9}
\end{equation*}
$$

whence we obtain

$$
\begin{equation*}
V_{n}(m) \equiv 0 \not \equiv m=2 r+1(\bmod 2), \tag{2.10}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
V_{n}(m) \not \equiv m\left(\bmod 2^{k}\right) \Rightarrow V_{n}(m) \not \equiv m(\bmod n) \text {. Q.E.D. } \tag{2.11}
\end{equation*}
$$

Proof of Proposition 2 (by induction on \boldsymbol{k}): The statement is clearly true for $k=1$. Let us suppose that the congruence

$$
\begin{equation*}
V_{2^{k-1}}(m) \equiv-1\left(\bmod 2^{k-1}\right), k>1 \tag{2.12}
\end{equation*}
$$

holds. Observing that (2.12) implies $\left[V_{2^{k-1}}(m)\right]^{2} \equiv 1\left(\bmod 2^{k}\right)$ and, according to (2.3), we can write

$$
\begin{equation*}
V_{2^{k}}(m)=\left[V_{2^{k-1}}(m)\right]^{2}-2 \equiv-1\left(\bmod 2^{k}\right) \text {. Q.E.D. } \tag{2.13}
\end{equation*}
$$

Notice that, with the same argument, it is also possible to state that

$$
\begin{equation*}
\text { If } m=(2 r+1) \text {, then } V_{2^{k}}(m) \equiv-1\left(\bmod 2^{k+1}\right) \text { and } V_{2^{k}}(m) \not \equiv-1\left(\bmod 2^{k+2}\right) \text {. } \tag{2.14}
\end{equation*}
$$

Proof of Proposition 3: If $n=2^{k}(2 s+1)$, from (2.4) we can write

$$
\begin{equation*}
V_{n}(m)=V_{2^{k}}\left(V_{2 s+1}(m)\right) ; \tag{2.15}
\end{equation*}
$$

moreover, if $n \neq 0(\bmod 3)$, we have [see (1.5)]

$$
\begin{equation*}
V_{2 s+1}(m) \equiv 1(\bmod 2) \Rightarrow V_{2 s+1}(m)=2 h+1, h \geq 0, \tag{2.16}
\end{equation*}
$$

whence, according to Proposition 2, we obtain

$$
\begin{equation*}
V_{2^{k}}\left(V_{2 s+1}(m)\right)=V_{2^{k}}(2 h+1) \equiv-1\left(\bmod 2^{k}\right) \text {. Q.E.D. } \tag{2.17}
\end{equation*}
$$

3. THE MAIN THEOREM

Let n be an even composite number. First, observe that $1 \neq-1\left(\bmod 2^{k}\right)$ for all $k>1$. Propositions 1,2 , and 3 and the above obvious remark allow us to assert:
(a) If $n \equiv 0(\bmod 3)$, then n is not an 1-F.Psp., according to Proposition 1;
(b) $n=2^{k},(k>1)$, is not an 1-F.Psp., according to Proposition 2;
(c) $n=2^{k}(2 s+1) \neq 0(\bmod 3),(k>1, s \geq 2)$, is not an 1-F.Psp., according to Proposition 3 .

Therefore, in order to demonstrate the Theorem, "There do not exist even 1-F.Psps.," it remains to prove the following

Proposition 4: Let

$$
\begin{equation*}
d \not \equiv 0(\bmod 3), d>1 \tag{3.1}
\end{equation*}
$$

be an odd integer, $d>1$. If $n=2 d$ is an even composite integer, then $L_{n} \not \equiv 1(\bmod n)$, that is, $n=$ $2 d$ is not an 1-F.Psp.

Proof (ab absurdo): Let us suppose that

$$
\begin{equation*}
L_{n}=L_{2 d} \equiv 1(\bmod 2 d) \Rightarrow L_{2 d} \equiv 1(\bmod d) \tag{3.2}
\end{equation*}
$$

by (2.2) we obtain

$$
\begin{equation*}
\left[L_{d}\right]^{2}=L_{2 d}-2 \equiv 1-2 \equiv-1(\bmod d) \tag{3.3}
\end{equation*}
$$

which implies [see (1.7), sec. 1]

$$
\begin{equation*}
d=\prod_{j} p_{j}^{k_{j}}, p_{j}=4 h_{j}+1, k_{j} \geq 0 \tag{3.4}
\end{equation*}
$$

Notice that (3.4) makes the $d \equiv \equiv(\bmod 3)$ hypothesis unnecessary.
Under the conditions (3.1) and (3.4), we have

$$
\begin{equation*}
d \equiv 1(\bmod 12) \text { or } d \equiv 5(\bmod 12) \tag{3.5}
\end{equation*}
$$

and we can find a positive integer m such that

$$
\begin{equation*}
m^{2} \equiv-1(\bmod d) \tag{3.6}
\end{equation*}
$$

then, from (1.8) and (3.5), we can write the congruence

$$
\begin{equation*}
V_{d}(m) \equiv m(\bmod d) \tag{3.7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left[V_{d}(m)\right]^{2} \equiv m^{2} \equiv-1(\bmod d) \tag{3.8}
\end{equation*}
$$

Therefore, by (3.3) and (3.8), we obtain the congruence

$$
\begin{equation*}
\left[L_{d}\right]^{2} \equiv\left[V_{d}(m)\right]^{2}(\bmod d) \tag{3.9}
\end{equation*}
$$

and, in particular, if p is the smallest prime factor of d, we can write

$$
\begin{equation*}
\left[L_{d}\right]^{2} \equiv\left[V_{d}(m)\right]^{2}(\bmod p) \Rightarrow L_{d} \equiv \pm V_{d}(m)(\bmod p) \tag{3.10}
\end{equation*}
$$

First, observe that $\operatorname{gcd}(d, \Lambda(p))=1$, then we can find an odd positive integer d^{\prime} such that

$$
\begin{equation*}
d \cdot d^{\prime} \equiv 1(\bmod \Lambda(p)) \tag{3.11}
\end{equation*}
$$

taking into account the equality (2.4), from (1.6), (3.10), and (3.11), we obtain

$$
\begin{equation*}
V_{d^{\prime}}\left(L_{d}\right)=L_{d^{\prime} d} \equiv 1 \equiv V_{d^{\prime}}\left(\pm V_{d}(m)\right)= \pm V_{d^{\prime} d}(m) \equiv \pm m(\bmod p), \tag{3.12}
\end{equation*}
$$

whence we obtain the congruence

$$
m \equiv \pm 1(\bmod p)
$$

which contradicts the assumption

$$
m^{2} \equiv-1(\bmod d) \Rightarrow m^{2} \equiv-1(\bmod p) . \text { Q.E.D. }
$$

ADDENDUM

About six months after this paper had been accepted for publication, I became aware of the fact that an alternative proof of the nonexistence of even 1-F.Psps. has been given by D. J. White, J. N. Hunt, and L. A. G. Dresel in their paper "Uniform Huffman Sequences Do Not Exist," published in Bull. London Math. Soc. 9 (1977):193-98.

REFERENCES

1. N. G. W. H. Beeger. "On Even Numbers n Dividing 2n-2." Amer. Math. Monthly (1951): 553-55.
2. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fibonacci Quarterly 13.4 (1975):345-49.
3. H. Cohn. A Second Course in Number Theory. New York : Wiley \& Sons, 1962.
4. A. Di Porto \& P. Filipponi. "More on the Fibonacci Pseudoprimes." Fibonacci Quarterly 27.3 (1989):232-42.
5. A. Di Porto \& P. Filipponi. "A Probabilistic Primality Test Based on the Properties of Certain Generalized Lucas Numbers." Lecture Notes in Computer Science 330 (Berlin: Springer, 1988):211-23.
6. A. Di Porto, P. Filipponi, \& E. Montolivo. "On the Generalized Fibonacci Pseudoprimes." Fibonacci Quarterly 28.4 (1990):347-54.
7. P. Filipponi \& A. F. Horadam. "A Matrix Approach to Certain Identities." Fibonacci Quarterly 26.2 (1988):115-26.
8. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 2nd ed. Oxford: Clarendon Press, 1945.
9. D. Jarden. Recurring Sequences. 3rd ed. Jerusalem: Riveon Lematematika, 1973.
10. D. E. Knuth. The Art of Computer Programming. New York: Addison Wesley, 1981.
11. O. Ore. Number Theory and Its History. 2nd ed. New York: McGraw-Hill, 1956.
12. L. Somer. "On Even Fibonacci Pseudoprimes." Applications of Fibonacci Numbers, vol. 4. Dordrecht: Kluwer, 1991.
13. J. Sommer. Introduction à la théorie des nombres algébriques. Paris: Hermann et Fils, 1911.
14. I. M. Vinogradov. Elements of Number Theory. New York: Dover, 1945.

AMS Classification numbers: 11B39, 11B50, 11A07

[^0]: *This work was carried out in the framework of an agreement between the Italian PT Administration and the Fondazione Ugo Bordoni.

