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1. INTRODUCTION AND PRELIMINARIES 
Fibonacci pseudoprimes of the lstfo>?<i(l-F.Psps.) have been defined [6] as composite inte-

gers n for which the Lucas congruence Ln = 1 (mod n) is satisfied. 
The aiim of this paper is to establish the following 

Theorem: There do not exist even Fibonacci pseudoprimes of the Ist kind. 

With regard to this problem, Di Porto and Filipponi, in [4], conjectured that there are no 
even-Fibonacci pseudoprimes of the 1st kind, providing some constraints are placed on their 
existence, and Somer, in [12], extends these constraints by stating some very interesting theorems. 
Moreover, in [1], a solution has been found for a similar problem, that is, for the sequence 
{Vn(2,1)}, defined by F0(2,l) = 2, ^(2,1) = 3, F„(2,1) = 3F^1(2,1)-2FW_2(2,1) = 2,, + 1 Actu-ally 
Beeger, in [1], shows the existence of infinitely many even pseudoprimes n, that is, even n such 
that 2" s=2 (modn) <=>F„(2,1) = 2 + 1 = ̂ (2,1) (modw). 

After defining (in this section) the generalized Lucas numbers, Vn(m), governed by the posi-
tive integral parameter m, and after giving some properties of the period of the sequences 
{Vn(m}} reduced modulo a positive integer t, we define in section 2 the Fibonacci pseudoprimes 
of the mfhkind(m-F.'Psps.) and we give some propositions. Finally, in section 3, we demonstrate 
the above theorem. 

Throughout this paper, p will denote an odd prime and Vn(m) will denote the generalized 
Lucas numbers (see [2], [7]), defined by the second-order linear recurrence relation 

(1.1) Vn(m) = mVn_l(m)+V„_2(m); V0(m) = 2, Vl(m) = m, 

m being am arbitrary natural number. It can be noted that, letting m - 1 in (1.1), the usual Lucas 
numbers Ln are obtained. 

The period of the sequence {Vn(m)} reduced modulo an integer t>\ will be denoted by 
'P(t){V„(m)}. For the period of the sequence {Vn(m)} reduced modulo/?, it has been established 
(see [8], [13]) that 

(1.2) ifj(m2+4,p) = l, thenP(p){F>)}|(i?-l), 

(1.3) if J(m2+ 4,/>) = - l , thm¥ip){Vn(m)}\2(p + ll 

where J(a,ri) is the Jacobi symbol (see [3], [10], [14]) of a with respect to n, and x\y indicates 
that x divides j . 

*This work was carried out in the framework of an agreement between the Italian PT Administration and the 
Fondazione Ugo Bordoni. 
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Moreover, it can be immediately seen that 

(1.4) if gcd(m2+4,p) = p, [i.e., m2^-4 (mod/?)], thenR } { F » } = 4, 

and, if m is an odd positive integer, 

(1.5) P(2){^(^)} = 3; Vn(jn) s 0 (mod2) iff n = 0 (mod3). 

Note that, according to (1.2), (1.3), and (1.4), the period of any generalized Lucas sequence 
reduced modulo a prime/? is a divisor of A(p) = 1cm(p -1,2(p +1)), that is, 

(1.6) P(p){Vn(m)}\A(p). 

Finally/observe that, if m is a positive integer such that m2 = -1 (mod?), then Y is of the 
form 

0-T> ' = 2*11/'/'. 

where /^ are odd rational primes of the form (see [8], [14]) 

p.=4hj+l, &G{0,1} dndkj >0. 
In this case, it follows that 
(1.8) P(0{F>i)} = 12 and V^m)^Vs{m)^m (modf). 

2. THE FIBONACCI PSEUDOPRIMES; DEFINITION 
AND SOME PROPOSITIONS 

The following fundamental property of the numbers Vn(m) has been established [11]: If n is 
prime, then, for all m, 
(2.1) Vn(m) = m (modri). 

The composite numbers n for which the congruence (2.1) holds are called Fibonacci 
pseudoprimes of the mth kind (m-F.Vsps.) [6]. 

First, let us give some well-known results (see [5], [9]) that will be needed for our further 
work. Let <ibe an odd positive integer. 

(2.2) V2d(m) = [Vd(m)f+2, 

(2-3) V2kd(m) = [V2k.ld(m)]2-2; k>\, 

(2.4) Vhd(m) = Vh(Vd(m)); h>\. 

To establish the theorem enounced in section 1, we state the following propositions. 

Proposition 1: Let m = 2r +1 be an odd positive integer. 
If n- 2k(2s +1), (k > 1, s > 1), is an even composite integer such that n = 0 (mod 3), then 

n is not an m-F.Psp., that is, 

(2.5) If« = 0(mod6), then Vn(m)^m(modri). 
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Proposition 2: Let m = 2r +1 be an odd positive integer. 

(2.6) If* = 2 \ k > 1, then V2* (m) ^ -1 (mod 2*). 

From this proposition, it follows that 

(2.7) If it > 1, then 2k is a (2* -1) -F.Psp. 

Proposition 3: Let m = 2r +1 be an odd positive integer. 

(2.8) If n = 2*(2s +1) # 0 (mod3), Jfc > 1, s > 2, then Vn(m) = -1 (mod2k). 

Proof of Proposition 1: lfn = 0 (mod 6), from (1.5) we have 

(2.9) Vn(m)^0(mo&2\ 

whence we obtain 
(2.10) Vn(m) = ®£m = 2r + l (mod 2), 
which implies that 
(2.11) Vn(m)^m(mod2k)^>Vn(m)^m(modn). Q.E.D. 

Proof of Proposition 2 (by induction on k): The statement is clearly true for k = 1. Let us sup-
pose that the congruence 

(2.12) r2JM(m) - -1 (mod2*"1), * > 1 
holds. Observing that (2.12) implies [J^*_,(/w)]2-=l(mod2*) and, according to (2.3), we can 
write 
(2.13) V2k(m) = [V2k^(m)f -2^-l(mod2k). Q.E.D. 

Notice that, with the same argument, it is also possible to state that 

(2.14) If m = (2r +1), then V^ (m) = -1 (mod 2k+l) and F2* (w) # -1 (mod 2k+2). 

Proof of Proposition 3: lfn-2k (2s +1), from (2.4) we can write 

(2.15) Vn(m) = V2t(V2s+l(m)); 

moreover, if n =# 0 (mod 3), we have [see (1.5)] 

(2.16) V2s+l(m) = 1 (mod 2) => V2s+l(m) = 2h + l,h>0, 

whence, according to Proposition 2, we obtain 

(2.17) V2k(V2s+l(m)) = V2k(2/i +1) = -1 (mod2*). Q.E.D. 

3. THE MAIN THEOREM 

Let n be an even composite number. First, observe that 1^-1 (mod 2k) for all k>\. Propo-
sitions 1, 2, and 3 and the above obvious remark allow us to assert: 

1993] 175 



NONEXISTENCE OF EVEN FIBONACCI PSEUDOPRIMES OF THE 1S T KIND 

(a) If n = 0 (mod 3), then n is not an 1-F.Psp., according to Proposition 1; 
(b) n - 2k, (k > 1), is not an 1-F.Psp., according to Proposition 2; 
(c) n = 2k(2s+1) # 0 (mod 3), (k > 1, s > 2), is not an 1-F.Psp., according to Proposition 3. 

Therefore, in order to demonstrate the Theorem, "There do not exist even l-F.Psps.,,f it 
remains to prove the following 

Proposition 4: Let 

(3.1) ^#0(mod3),rf>l 

be an odd integer, d>\. If n = 2d is an even composite integer, then Ln # 1 (mod n\ that is, n = 
2dv$> not an 1-F.Psp. 

Proof (ah ahsurdo): Let us suppose that 

(3.2) 4 = Z2rf = l(mod2rf)=>LZJsl(modrf); 
by (2.2) we obtain 
(3.3) [ZJ2 = Z 2 , - 2 - l - 2 - - l ( m o d r f ) 
which implies [see (1.7), sec. 1] 

(3.4) d = ]Jp';.\pj = 4hj + l,kJ>0. 
J 

Notice that (3.4) makes the d £ 0 (mod 3) hypothesis unnecessary. 
Under the conditions (3.1) and (3.4), we have 

(3.5) rf = l(modl2)orrf = 5(modl2), 

and we can find a positive integer m such that 

(3.6) w2 = -l(modrf); 

then, from (1.8) and (3.5), we can write the congruence 

(3.7) Vd(m) = m(modd), 
which implies 
(3.8) WdWf ^rn2^-l(modd). 

Therefore, by (3.3) and (3.8), we obtain the congruence 

(3.9) [Ldf ^[Vd(m)f (modd), 

and, in particular, if/? is the smallest prime factor of d, we can write 

(3.10) [Ldf = [Vd(m)f (mod/?) => ^ s ±Vd(m) (mod/?). 

First, observe that gcd(d, A(/?)) = 1, then we can find an odd positive integer d' such that 

(3.11) d-d'ssl (mod AQO); 

taking into account the equality (2.4), from (1.6), (3.10), and (3.11), we obtain 
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(3.12) VAh)=U* ^ - 1 ^ ( ± W 
whence we obtain the congruence 

m = ±l(modp) 
which contradicts the assumption 

m2 =-1 (modd)=>m2 = -l(modp). Q.E.D. 

ADDENDUM 

About six months after this paper had been accepted for publication, I became aware of the 
fact that an alternative proof of the nonexistence of even 1-F.Psps. has been given by D. J. White, 
J. N. Hunt, and L. A. G. Dresel in their paper "Uniform Huffman Sequences Do Not Exist," pub-
lished in Bull. London Math Soc. 9 (1977): 193-98. 
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