MIXED FERMAT CONVOLUTIONS

Gospava B. Dordevic

Faculty of Technology, Department of Mathematics, University of Niš, 16000 Leskovac, Yugoslavia

(Submitted June 1991)

1. INTRODUCTION

The $k^{\text {th }}$ convolution sequences for Fermat polynomials of the first kind $\left(a_{n, m}^{(k)}(x)\right)$ and the second kind $\left(b_{n, m}^{(k)}(x)\right)$ are defined in this paper. Generating functions, recurrence relations, and explicit representations are given for these polynomials. A differential equation that corresponds to polynomials of type $\left(a_{n, m}^{(k)}(x)\right)$ is presented. Finally, $k^{\text {th }}$ convolutions of mixed Fermat polyno-mials of $\left(c_{n, m}^{(s, r)}(x)\right)$ are defined. In some special cases, polynomials of $\left(c_{n, m}^{(s, r)}(x)\right)$ are transformed into already known polynomials of $\left(a_{n, m}^{(k)}(x)\right)$ and of $\left(b_{n, m}^{(k)}(x)\right)$.

2. POLYNOMIALS $a_{n, m}^{(k)}(x)$

A. F. Horadam [2] defined Fermat polynomials of the first kind $A_{n}(x)$ and the second kind $B_{n}(x)$ by

$$
\begin{equation*}
A_{n}(x)=x A_{n-1}(x)-2 A_{n-2}(x), A_{-1}(x)=0, A_{0}(x)=1, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}(x)=x B_{n-1}(x)-2 b_{n-2}(x), B_{0}(x)=2, B_{1}(x)=x . \tag{2.2}
\end{equation*}
$$

Their generating functions are

$$
\begin{equation*}
\left(1-x t+2 t^{2}\right)^{-1}=\sum_{n=0}^{\infty} A_{n}(x) t^{n} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-2 t^{2}}{1-x t+2 t^{2}}=\sum_{n=0}^{\infty} B_{n}(x) t^{n} \tag{2.4}
\end{equation*}
$$

From (2.1) and (2.2), we can find a few members of the sequence of polynomials $A_{n}(x)$ and $B_{n}(x)$:

$$
A_{1}(x)=x, A_{2}(x)=x^{2}-2, A_{3}(x)=x^{3}-4 x, A_{4}(x)=x^{4}-6 x^{2}+4
$$

and

$$
B_{7}(x)=x^{2}-4, B_{3}(x)=x^{3}-6 x, B_{4}(x)=x^{4}-8 x^{2}+8 .
$$

H. W. Gould [1] studied a class of generalized Humbert polynomials $P_{n}(m, x, y, p, C)$ defined by

$$
\left(C-m x t+y t^{m}\right)^{p}=\sum_{n=0}^{\infty} P_{n}(m, x, y, p, C) t^{n}
$$

where $m \geq 1$ is integer and the other parameters are unrestricted in general. The recurrence relation for the generalized Humbert polynomials is

$$
C n P_{n}-m(n-1-p) x P_{n-1}+(n-m-m p) y P_{n-m}=0, n \geq m \geq 1,
$$

where we put $P_{n}=P_{n}(m, x, y, p, C)$.
In this paper we consider the polynomials $\left(a_{n, m}^{(k)}(x)\right)$ defined by

$$
a_{n, m}^{(k)}(x)=P_{n}(m, x / m, 2,-(k+1), 1) .
$$

Their generating function is given by

$$
\begin{equation*}
F(x, t)=\left(1-x t+2 t^{m}\right)^{-(k+1)}=\sum_{n=0}^{\infty} a_{n, m}^{(k)}(x) t^{n} . \tag{2.5}
\end{equation*}
$$

Comparing (2.3) to (2.5), we can conclude that

$$
a_{n, 2}^{(0)}(x)=A_{n}(x) \quad[\text { Fermat polynomials }(2.1)] .
$$

Development of the function (2.5) gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n, m}^{(k)}(x) t^{n} & =\sum_{n=0}^{\infty} \frac{(k+1)_{n}}{n!} t^{n}\left(x-2 t^{m-1}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\left[\frac{n}{m}\right]}(-2)^{i} \frac{(k+1)_{n-(m-1) i}}{i!(n-m i)!} x^{n-m i}\right) t^{n} .
\end{aligned}
$$

Comparison of coefficients of t^{n} in the last equation shows that polynomials $\left(a_{n, m}^{(k)}(x)\right)$ possess explicit representation as follows:

$$
\begin{equation*}
a_{n, m}^{(k)}(x)=\sum_{i=0}^{\left[\frac{n}{m}\right]}(-2)^{i} \frac{(k+1)_{n-(m-1) i}}{i!(n-m i)!} x^{n-m i} . \tag{2.6}
\end{equation*}
$$

If we differentiate the function $F(x, t)(2.5)$ with respect to t, and compare coefficients of t^{n}, we get the three-term recurrence relation

$$
n a_{n, m}^{(k)}(x)=x(n+k) a_{n-1, m}^{(k)}(x)-2(n+m k) a_{n-m, m}^{(k)}(x), n \geq m .
$$

The initial starting polynomials are

$$
a_{0, m}^{(k)}(x)=0, \quad a_{n, m}^{(k)}(x)=\frac{(k+1)_{n}}{n!} x^{n}, \quad n=1,2, \ldots, m-1
$$

Then, if we differentiate the polynomials $a_{n, m}^{(k)}(x)(2.6) s$ times, term by term, we get the equality [1]:

$$
D^{s} a_{n, m}^{(k)}(x)=(k+1)_{s} a_{n-s, m}^{(k+s)}(x), n \geq s
$$

Let the sequence $\left(f_{r}\right)_{n=0}^{n}$ be given by $f_{r}=f(r)$, where

$$
f(t)=(n-t)\left(\frac{n-t+m(k+1+t)}{m}\right)_{m-1} .
$$

Let Δ be the standard difference operator defined by $\Delta f_{r}=f_{r+1}-f_{r}$, and its power by

$$
\Delta^{0} f_{r}=f_{r}, \quad \Delta^{k} f_{r}=\Delta\left(\Delta^{k-1} f_{r}\right) .
$$

We find that the next property of $a_{n, m}^{(k)}(x)$ is very interesting.
The polynomial $a_{n, m}^{(k)}(x)$ is a particular solution of the linear homogeneous differential equation of the $m^{\text {th }}$ order [4],

$$
\begin{equation*}
y^{(m)}+\sum_{s=0}^{m} a_{s} x^{s} y^{(s)}=0, \tag{2.7}
\end{equation*}
$$

with coefficients $a_{s}(s=0,1, \ldots, m)$ given by

$$
\begin{equation*}
a_{s}=\frac{1}{2 m s!} \Delta^{s} f_{0} \tag{2.8}
\end{equation*}
$$

From (2.8), we get

$$
\begin{aligned}
& a_{0}=\frac{1}{2 m} n\left(\frac{n+m(k+1)}{m}\right)_{m-1} \\
& a_{1}=\frac{1}{2 m}\left((n-1)\left(\frac{n-1+m(k+2)}{m}\right)_{m-1}-n\left(\frac{n+m(k+1)}{m}\right)_{m-1}\right)
\end{aligned}
$$

Since

$$
f(t)=-\left(\frac{m-1}{m}\right)^{m-1} t^{m}+\text { term of lower degree }
$$

we see that

$$
a_{m}=-\frac{1}{2 m}\left(\frac{m-1}{m}\right)^{m-1}
$$

For $m=2$, the differential equation (2.7) is

$$
\left(1-\frac{1}{8} x^{2}\right) y^{\prime \prime}-\frac{2 k=3}{8} x y^{\prime}+\frac{n}{8}(n+2 k+2) y=0,
$$

and it corresponds to the polynomials $a_{n, 2}^{(k)}(x)$.
For $m=2$ and $k=0$, the equation (2.7) is

$$
\left(1-\frac{1}{8} x^{2}\right) y^{\prime \prime}-\frac{3}{8} x y^{\prime}+\frac{n}{8}(n+2) y=0,
$$

and it corresponds to Fermat polynomials of the first kind $A_{n}(x)$.

3. POLYNOMIALS $b_{n, m}^{(k)}(x)$

In this section we introduce a class of polynomials $\left(b_{n, m}^{(k)}(x)\right), k \in N$.
Definition 3.1: The polynomials $b_{n, m}^{(k)}(x)$ are defined by

$$
\begin{equation*}
F(x, t)=\left(\frac{1-2 t^{m}}{1-x t+2 t^{m}}\right)^{k+1}=\sum_{n=0}^{\infty} b_{n, m}^{(k)}(x) t^{n} . \tag{3.1}
\end{equation*}
$$

Comparing (2.4) to (3.1), we can see that

$$
b_{n, 2}^{(0)}(x)=B_{n}(x) \quad[\text { Fermat polynomials }(2.2)] .
$$

Expanding the left-hand side of (3.1), we obtain the explicit formula

$$
\begin{equation*}
b_{n, m}^{(k)}(x)=\sum_{i=0}^{k+1}(-2)^{i}\binom{k+1}{i} a_{n-m i, m}^{(k)}(x) . \tag{3.2}
\end{equation*}
$$

For $m=2$ and $k=0$, the formula (3.2) is

That is,

$$
b_{n, 2}^{(0)}(x)=a_{n, 2}^{(0)}(x)-2 a_{n-2,2}^{(0)}(x) .
$$

$$
B_{n}(x)=A_{n}(x)-2 A_{n-2}(x) .
$$

and it corresponds to the known relation between the Fermat polynomials $A_{n}(x)$ and $B_{n}(x)$.

4. MIXED FERMAT CONVOLUTIONS

A. F. Horadam and J. M. Mahon [3] studied a class of polynomials $\left(\pi_{n}^{(a, b)}(x)\right)$, mixed Pell polynomials. Similarly, we define and then carefully study polynomials $\left(c_{n, m}^{(s, r)}(x)\right)$, mixed Fermat convolutions, where all parameters are natural numbers.

Definition 4.1: The polynomials $\left(c_{n, m}^{(s, r)}(x)\right)$ are given by

$$
\begin{equation*}
F(x, t)=\frac{\left(1-2 t^{m}\right)^{r}}{\left(1-x t+2 t^{m}\right)^{r+s}}=\sum_{n=0}^{\infty} c_{n, m}^{(s, r)}(x) t^{n}, \tag{4.1}
\end{equation*}
$$

on condition that $s+r \geq 1$.
The polynomials $\left(c_{n, m}^{(s, r)}(x)\right)$ have some interesting characteristics, some of which are described in the results that follow.

Theorem 4.1: The polynomials $\left({ }_{n}^{n, m}(5, r)(x)\right)$ have the representation

$$
\begin{equation*}
c_{n, m}^{(s, r)}(x)=\sum_{i=0}^{r-j}(-2)^{i}\binom{r-j}{i} c_{n-m i, m}^{(r+s-j, j)}(x) . \tag{4.2}
\end{equation*}
$$

Proof: By using (4.1), we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} c_{n, m}^{(s, r)}(x) t^{n} & =\left(1-2 t^{m}\right)^{r-j} \cdot \frac{1}{\left(1-x t+2 t^{m}\right)^{r+s-j}} \cdot\left(\frac{1-2 t^{m}}{1-x t+2 t^{m}}\right)^{j} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{r-j}(-2)^{i}\binom{r-j}{i} c_{n-m i, m}^{(r+s-j, j)}(x) t^{n} .
\end{aligned}
$$

If we compare coefficients of t^{n} in the last equality, we have (4.2). Using (4.1) again, we obtain the following representation:

$$
c_{n, m}^{(s, r)}(x)=\sum_{k=0}^{\infty} a_{n-k, m}^{(s-1)}(x) b_{k, m}^{(r-1)}(x)
$$

Also, we see that

$$
F(x, t)=\frac{\left(1-2 t^{m}\right)^{r}}{\left(1-x t+2 t^{m}\right)^{r+s}}=\left(1-2 t^{m}\right)^{r} \sum_{n=0}^{\infty} a_{n, m}^{(r+s-1)}(x) t^{m}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{r}(-2)^{i}\binom{r}{i} a_{n-m i, m}^{(r+s-1)}(x)\right) t^{n}
$$

From the last equality, we can conclude that

$$
c_{n, m}^{(s, r)}(x)=\sum_{i=0}^{r}(-2)^{i}\binom{r}{i} a_{n-m i, m}^{(r+s-1)}(x)
$$

The Fermat polynomials of the first and of the second kind satisfy a three-term recurrence relation. But, mixed Fermat convolutions satisfy a four-term recurrence relation of unstandard form, which we prove in the following result.

Theorem 4.2: The polynomials $c_{n, m}^{(s, r)}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
n c_{n, m}^{(s, r)}(x)=-2 m r c_{n-m, m}^{(s+1, r-1)}(x)+x(r+s) c_{n-1, m}^{(s+1, r)}(x)-2 m(r+s) c_{n-m, m}^{(s+1, r)}(x), n \geq m \tag{4.3}
\end{equation*}
$$

Proof: If we differentiate $F(x, t),(4.1)$, with respect to t, we get

$$
\sum_{n=1}^{\infty} n c_{n, m}^{(s, r)}(x) t^{n-1}=-2 m r t^{m-1} \sum_{n=0}^{\infty} c_{n, m}^{(s+1, r-1)}(x) t^{n}+(r+s)\left(x-2 m t^{m-1}\right) \sum_{n=0}^{\infty} c_{n, m}^{(s+1, r)}(x) t^{n}
$$

Comparing coefficients of t^{n} in the last equality, we have (4.3).
If we differentiate $F(x, t),(4.1)$, with respect to x, k times, term by term, we find that the polynomials $c_{n, m}^{(s, r)}(x)$ satisfy the equality

$$
\begin{equation*}
D^{k} c_{n, m}^{(s, r)}(x)=(r+s)_{k} c_{n-k, m}^{(s+k, r)}(x) \quad(n \geq k) \tag{4.4}
\end{equation*}
$$

Special Cases

Starting with the equality

$$
\frac{\left(1-2 t^{m}\right)^{r+s}}{\left(1-x t+2 t^{m}\right)^{2 r+2 s}}=\frac{\left(1-2 t^{m}\right)^{r}}{\left(1-x t+2 t^{m}\right)^{r+s}} \cdot \frac{\left(1-2 t^{m}\right)^{s}}{\left(1-x t+2 t^{m}\right)^{s+r}}
$$

we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} c_{n, m}^{(s+r, s+r)}(x) t^{n} & =\left(\sum_{n=0}^{\infty} c_{n, m}^{(s, r)}(x) t^{n}\right)\left(\sum_{n=0}^{\infty} c_{n, m}^{(r, s)}(x) t^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} c_{n-k, m}^{(s, r)}(x) c_{k, m}^{(r, s)}(x)\right) t^{n}
\end{aligned}
$$

From the last equality, we obtain

$$
\begin{equation*}
c_{n, m}^{(s+r, s+r)}(x)=\sum_{k=0}^{n} c_{n-k, m}^{(s, r)}(x) c_{k, m}^{(r, s)}(x) \tag{4.5}
\end{equation*}
$$

For $r=s$, the equality (4.5) is

$$
c_{n, m}^{(2 s, 2 s)}(x)=\sum_{k=0}^{n} c_{n-k, m}^{(s, s)}(x) c_{k, m}^{(s, s)}(x)
$$

From the equalities (2.5), (3.1), and (4.1), we obtain:

$$
\begin{equation*}
c_{n, m}^{(s, 0)}(x)=a_{n, m}^{(s-1)}(x), \text { for } r=0 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n, m}^{(0, r)}(x)=b_{n, m}^{(r-1)}(x), \text { for } s=0 \tag{4.7}
\end{equation*}
$$

According to (4.4), (4.6), and (4.7), we get the inequalities
and

$$
D^{k} a_{n, m}^{(s-1)}(x)=(s)_{k} a_{n-k, m}^{(s+k-1)}(x), \text { for } r=0
$$

$$
D^{k} b_{n, m}^{(r-1)}(x)=(r)_{k} c_{n-k, m}^{(k, r)}(x), \text { for } s=0
$$

For $r=0$, the equality (4.5) becomes

$$
c_{n, m}^{(s, s)}(x)=\sum_{k=0}^{n} a_{n-k, m}^{(s-1)}(x) b_{k, m}^{(s-1)}(x)
$$

According to (4.3) and (4.5), we have

$$
n \sum_{k=0}^{\infty} c_{n-k, m}^{(s, 0)}(x) c_{k, m}^{(0, s)}(x)=-2 m s c_{n-m, m}^{(s+1, s-1)}(x)+2 x s c_{n-1, m}^{(s+1, s)}(x)-4 m s c_{n-m, m}^{(s+1, s)}(x), n \geq m
$$

From the equalities (4.2) and (4.7), for $j=s=0, r=k+1$, it follows that

$$
b_{n, m}^{(k)}(x)=\sum_{i=0}^{k+1}(-2)^{i}\binom{k+1}{i} a_{n-m i, m}^{(k)}(x)
$$

Finally, from the equalities (4.2) and (4.6), for $j=r=0, s=k+1$, we see that

$$
a_{n, m}^{(k)}(x)=\sum_{i=0}^{k+1}(-2)^{i}\binom{k+1}{i} a_{n-m i, m}^{(k)}(x)
$$

REFERENCES

1. H. W. Gould. "Inverse Series Relations and Other Expansions Involving Humbert Polynomials." Duke Math. J. 32 (1965):697-712.
2. A. F. Horadam. "Chebishev and Fermat Polynomials for Diagonal Functions." Fibonacci Quarterly 17.4 (1979):328-33.
3. A. F. Horadam \& J. M. Mahon. "Mixed Pell Polynomials." Fibonacci Quarterly 25.4 (1987):291-98.
4. G. V. Milovanovic \& G. B. Dordevic. "On Some Properties of Humbert's Polynomials." Fibonacci Quarterly 25.4 (1987):356-60.

AMS Classification number: 33C55

