
ON THE NUMBER OF INDEPENDENT SETS OF NODES IN A TREE 

R. Duttont, N. Chandrasekharant, and R. Brighamt* 
Department of Computer Science* 

Department of Mathematics"' 
University of Central Florida, Orlando, FL 32816 

(Submitted May 1991) 

1. INTRODUCTION 
In [4] Wilf shows that the number of maximal independent sets of nodes (Mrs) for a non-

empty tree on n nodes is bounded above by 

/•<V>-I2"/2"1 + 1 if" is even, /W-j2(n-i)/2 i f w i s o d d 

For each value of w, he gives a tree, depending upon the parity of«, that attains these bounds. 
The two general forms are shown below in Figure 1. 
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FIGURE 1 

Throughout, we assume nonempty trees and, following the notation in [4], let //(7) be the 
number of Mis's in a tree T. We will derive lower and upper bounds on ju(T) in terms of J3I(T), 
the maximum number of independent edges in T. 

First observe that, in any graph, two degree-one nodes having a common neighbor occur in 
the same Mis's. Thus, the number of Mis's is unaffected by the removal of one of these nodes. 
Such "pruning" can be repeated, and we formalize this fact as a lemma. Although the lemma is 
stated here for trees, it is actually valid for arbitrary graphs, and demonstrates, in some sense, the 
independence between the number of nodes and the number of maximal independent sets of 
nodes. 

Lemma 1: Let Tbe a tree and T the tree obtained by removing all but one degree-one neighbor 
from every node having two or more such neighbors. Then ju(T) = ju(T') and /?x(r) = Pi(T'). 

Any tree with diameter d, 2<d<4, can be reduced by Lemma 1 to one of the forms in 
Figure 1. The w-even case arises from trees containing two degree-one nodes that are distance 
three from each other. Define Te to be this set of trees and let TQ be the remaining trees with 
diameter between two and four. Notice that Kx and K2 are the only trees with diameter less than 
or equal to four that are not in TQ u T0. Neither are they reducible to a tree of Figure 1. For 
these, though, we know that ju(Kx) = 1 and ju(K2) - 2. We can determine exactly ju(T) for any 
tree J with diameter at most four. 
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Lemma 2: Let The a tree with diameter at most four and Px = PX(T). Then 

ifrereu{£2}, »(T)=$;1+l *T**W. 

Proof: All trees in TG ^ T0 must, by the above discussion, reduce to either the n even (with 
n = 2px) or the n odd (with « = 2j5x +1) case in Figure 1. The result then follows from/w) given 
above. Finally, since Pl(Kl) = 0, fi(Kx) = l, pl(K2) = l, and ju(K2) = 2, ^ a n d i ^ a^so satisfy 
the lemma. • 

The trees in TQ^J TQ will be called terminal trees or terminal subtrees when part of a larger 
tree, and will have an assigned root node u. With one exception, the root node must be selected 
from those nodes that, after pruning, would be nodes of maximum degree. The star Kln, the 
exception, must be rooted at a leaf node. The root of a terminal subtree S has a single neighbor 
not in S. The neighborhoods of all other nodes in S are a subset ofS. In a pruned tree, a subtree 
whose removal would disconnect the graph or leave an isolated Kx or J^ is not a terminal subtree. 
The trees in Figure 1 are terminal trees. The tree T in Figure 2 below is formed by removing a 
terminal subtree from T. All trees, other than Kx m&K2, are either themselves terminal trees or 
contain at least two terminal subtrees. Thus, for any pruned tree T with diameter at least five, 
there exist adjacent nodes u and v permitting J to be drawn in one of the two forms of Figure 2, 
where u is the root of a terminal subtree and v is in the subtree T. 

k 
(a) 

1 2 

FIGURE 2 

k 
(b) 

The structure of the graphs in Figure 2 corresponds to the structure in Figure 2 of Wilf s 
paper [4]. From this we see that Wilfs equation (2), a recursive equation solving ju(T), has a 
simpler form because of the pruning permitted by Lemma 2. We include it here, along with the 
conclusions of Lemma 2, where fix = PX(T) and k, a, and b are as in Figure 2. 

(i) M(T) = 
2"'-1 + l 

M(T-{a,b}) + 2kju(T') 

i fTe^utK,} , 
IfTeT^iKJ, 
otherwise. 

Part three applies when the diameter is at least five, and then px(T-{a9 b}) = Pl -1 and PX{T) is 
either px - k - 2 or px - k -1. In either case, the subtree T has at least three nodes. 

We use this result to obtain a lower bound on the number of MIS in a tree. Then we use 
another tree-reduction operation to determine new lower bounds, and also new upper bounds 
which normally improve those given by Wilf. Finally, we obtain bounds on the number of inde-
pendent sets (including nonmaximal) of nodes in an arbitrary tree. 
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2. IMPROVED BOUNDS 
Since ju(T) is essentially independent of the number of nodes in T, we look for bounds with 

respect to the edge independence number PX{T). The first, Theorem 1, is a lower bound for ju(T) 
that appeals to Lemma 1 and the Fibonacci numbers Fn. 

Sanders [3] exhibits a tree on 2n nodes and proves it has Fn+2 maximal independent sets of 
nodes. The tree, called an extended path, is formed by appending a single degree-one node to 
each node of a path on n nodes. In terms of their edge independence number, we have for such 
trees T that ju(T) = i^1+2, where fix = Pi(T) = n. We show next that, for a given value of fil9 no 
tree T with px(T) = px has a smaller number of maximal independent sets of nodes. Therefore, 
because of Lemma 1, extended paths actually represent, for each value of Pl9 an infinite class of 
trees satisfying the bound. 

Theorem 1: Let The any tree with fix = PX(T). Then //(J) >Fp+2m. 

Proof: If TeTQ<uTQ\u{Kl9K2}, then the result follows because Fp +2 is bounded above by the 
appropriate +1 or 2Pl value indicated in equation (1). Otherwise, we can use the recurrence 
formula in equation (1) inductively to conclude that ju(T) > F^+l+2kF^_k. It is straightforward 
to show, by another induction argument, that 2kF^_k>F^ . Therefore, //(7)>i^i+1+i<^ = 

Terminal subtrees can be removed from a tree T9 one at a time, until T is empty providing, in 
some sense, a count of the number of terminal subtrees in T. Since the order of removal is not 
unique, one might suspect that the subtrees obtained in such a removal scheme also may not be 
unique. This is indeed the case and can be verified by examining a few small examples. It also 
would seem the number found could vary depending upon the order of removal. We now show 
that this does not occur. 

Lemma 3: For any tree, every order of terminal subtree removal results in the same number of 
removed subtrees. 
Proof: Let tn^n(Tr) and tmSLX(T) be the minimum and maximum number of terminal subtrees that 
can be removed from a tree T, under any order of removal. If Th itself a terminal tree, the result 
holds since there is no option but to remove the entire tree. This also implies tndn(T) = 2 when-
ever 7max(7) = 2. Now, letting tm2iX{T) - m > 3, we show by induction that tr^n{T) also must equal 
m. For some k, 2 < k < *max(7), there exist terminal subtrees Sly S2,...,Sk of T, any one of which 
can be an initial subtree removed from T. There exist indices / and j , 1 <i^j<k, for which 
tn*x(T-Si) = tnmx(T)-l = m-l and / m i n ( r - ^ ) = / m i n ( r ) - l < m - l . By the induction hypoth-
esis, terminal subtrees can be removed in any order from T-St and T-Sj without affecting the 
number of such removals. Furthermore, Sj is a terminal subtree of T-St and St is one of T-Sj. 
Thus, tm(T-Si-SJ) = tmn(T)-2 = m-2 and tmin(T-Sj -St) = tm]n(T) -2 <m- 2, a contra-
diction implied by the induction hypothesis since T-Sj-St = T- St - Sj. Hence, tndn (T) -m • 

In view of Lemma 3, it is now possible to define, for any tree T, a new invariant t(T) to be the 
number of terminal subtrees removable from T. It is convenient to let ^K^ = t(K2) = 0. 

Theorem2: Let T be a tree with fix = fi^T) and t = t(T). Then 2A~' +2r - 1 </ / ( ! )< 2fil'. 
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Proof: If t(T) < 1, then Tis in 2̂  u T0 KJ {Kh K2} and both bounds follow from the first two cases 
of equation (1). Now consider the case in which J3X = 2t Then the lower bound is 2t+l - 1. A 
straightforward induction argument shows 2t+l-l<F2t+2; then Theorem 1 establishes that such 
trees satisfy the lower bound of the theorem. Now, assume T is a tree with t(T) = / > 2 and that 
the lower bound is satisfied by all trees with either fewer than t terminal subtrees or with t termi-
nal subtrees and It independent edges. Then, we can invoke the third part of equation (1) induc-
tively and have, referring to Figure 2, 

PX{T- {a, b})=pi-l;t-l< t(T- {a, b}) < t; 
Pl-k-2<pi{T')<pi-k-X t(T') = t-l. 

The lower bound decreases as px decreases and, when t decreases, the lower bound decreases if 
and only if Pl < 2t Thus, we must consider two cases: 

CaseL px<2t mdt(T-{a,h}) = t-l. Then 

ju(T) > {2&-f + 2'"1 -1} + 2k{2&-k-f-1 + 2f_1 -1} 
= 2A_f + 2f_1 - 1 + 2A"'~1 + 2k (2'_1 -1) > 2 A - ' + 2* - 1 . 

Case 2. px > 2t and t(T- {a, b}) = t. The result when Pl = 2t has already been established. 
We again use the recursive part of equation (1), where t{T- {a,b}) = t and PX{T- {a,b}) = pi-l, 
and proceed by induction on the value of px. It follows that 

M(T) > {2/?1"1-' + 2r -1} + 2k {2&-k-f-1 + 2'"1 -1} 
= 2^-1 + 2' - 1 + 2A"'"1 + 2k (2f"1 -1) > 2^ + 2r - 1 . 

establishes the lower bound. 
To verify the right inequality, we again use equation (1) inductively. The result was shown 

above for all trees with t{T) < 1. Assume Tis a tree with t{T) > 2 and that the result holds for all 
trees with edge independence number less than Pv Then pl-Pl{T)>3 and ju(T) <2y?1_1 + 
2*2A"*-1 = 2A. D 

When t(T) < 1, regardless of the value of Pi(T), equation (1) shows that equality holds on 
the right in the n odd cases of Figure 1 and on the left in the n even cases. Other trees can be 
obtained by appending an arbitrary number of degree-one neighbors to the degree-two nodes in 
either of the trees in Figure 1. This process produces all trees Tfor which t(T)= . 

The upper bound also is achievable, for any fix and t >2, by an infinite number of trees. 
Consider the tree in Figure 2(a). The recurrence in equation (1) can be iterated k times, on the 
first term, to give the equation ju(T) = fi(T") + (2k+l ~ 1)M(T'\ where T is the same as in Figure 
2, and T" is V with node v having node u as a degree-one neighbor. We call this the Iterated 
recurrence formula. From Lemma 1, if node v already has a degree-one neighbor, 
H(T") = ju{T) and the recurrence formula simplifies to ju(T) - 2k+lju{T). We now construct a 
tree T that has this property at each step of the iterated recurrence. Let Tx be any tree in TQ. For 
t > 2, let St be any tree in T0 with its identified root node u. Now, form Tt by adding an edge 
between node u in St and any node in Tt_r having a degree-one neighbor. Clearly, Px(Tt) = Px{St) 
+ A(^-i) ?

 a n d a n induction argument with ji(Tt) = 2k+1ju(Tt_l) shows that ju(Tt) = 2MT'\ The 
lower bound is also achieved, when t = 2, by any tree that can be pruned to P6, the path on six 
nodes. 
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We conclude this section with an upper bound on ju{T) for a restricted class of trees that will 
prove useful in the next section. Let J* be the collection of trees with every node being a 
degree-one node or having a degree-one neighbor. First, an upper bound independent of t(T) is 
given. 
Theorem 3: Let TGT* with J3X = # ( 7 > Then ju(T) < 2/?1"1 +1. 
Proof: If t( T) < 1, then T GTQ<U {K2} and equality follows from equation (1). Now, assume that 
TeT*, t(T) > 2, P^T) = fix = m > 3, and that the result holds for trees in 7* with fewer inde-
pendent edges. Identify a terminal subtree, as in Figure 2(b), and use the recurrence in equation 
(1). We have 7 - {a,b} and T both in 7* and (5X(T- {a,b})=pl - 1 . Here, we are guaranteed 
that PX{T') = /?! - k - 2. Therefore, by the induction hypothesis, 

ju(T) < 2&-2 + l + 2*(2/?1-*-3 + 1) = 2A"2 + l + 2/?1~3 + 2*. 

S i n c e l < ^ 1 ( r ) : = : A - ^ - 2
?

w e h a v e ^ ^ A - 3 a n d t h e n / / ( r ) < 2 A " 1 + l. D 

Lemma 4: Let 7 G 7* with ^ = /?x(7) and f - f (7). Then fix > It. 

Proof: lfT-K2, then/(7) = 0 and the conclusion follows. Iff = 1, then T GTG and, for all such 
trees, PX{T) >2-2t. Assume t > 1 and that the result holds for all trees with fewer terminal sub-
trees. Now, let 7 G 7* with t(T) = t. From previous discussions and Figure 2(b), we know that 
t(T') = t-l, $ ( 7 ' ) =fil-h-2, and T e 7 *. Therefore, by the induction hypothesis, 

A-Jfc-2 >2{t-\). 
Since k > 0, the result follows. D 

The bound of Theorem 3 can be improved when t(T) is known. We will again make use of 
the iterated form of the recurrence formula described after Theorem 2. 

Theorem* Let TGT*-{K2) wi th^ = # ( 7 ) and t = t{T). Then//(I) <3f-12/?1-2f+1+2f_1. 
Proof: When t = 1, the right-hand side reduces to 2^1_1 +1, the bound given in Theorem 3. Sup-
pose TG 7* with 7(7) = t>2 and that the result holds for all trees with fewer terminal subtrees. 
The iterated form of the recurrence in equation (1) is ju(T) = ju{T") + (2k+1 - l)ju(T'), where 7" is 
as described in the discussion following Theorem 2. Then p^T") -Px-k-\ and t -1 < t(T") < t 
and, since the bound increases as t decreases, we have by the induction hypothesis that 

^r)<3t-22Px-k-2t+2+2t-2 a n ( j / / ( r ) < 3 ' - 2 2 A - * - 2 ' + l + 2 ' - 2 . 

This gives 
ju(T) < 3f-22^-k-2t+2 + 2f~2 + (2k+l - i)(3'-22A-*-2r+i + 2f"2) 
_ Tt-22P\-k-2t+2 , Tt-2jPx-2t+2 _ 2t-220i~k-2t+l ^Iryt-l 

Suppose this bound is greater than 2t~l2Pl~2t+l + 2'"1. Then we have 

ryk+\rst-2 __ rA-\ Tt-lrjPx-2t+\ __ s<->t-2~/31-2t+2 . ^-2*0^-21+1} 

2t-\(2k _V}> 3r-22A-2r+i(1 _ 2-k^ o r 2t-l2k > 3r-22A-2r+i 

Since k<Px-2t, from the proof of Lemma 4, 2r"12A_2r >3f"V1_2r+1 or 2f"2 >3r"2, a 
contradiction. • 
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Trees achieving this bound are presented at the end of the next section. 

3. NUMBER OF INDEPENDENT SETS 

Now consider the number of independent sets of nodes in a tree. The counted sets must be 
distinct, but they need not be maximal, and we count the empty set. For example, the star Kln 

has 2n +1 independent sets of nodes. Denote this number by /i*(T). Prodinger & Tichy [2] have 
shown, for an arbitrary tree on n nodes, that Fn+2 < ju* (T) < 2n~l +1. The left inequality holds for 
a path on n nodes and the right for the star Kln_l. We shall derive these bounds in a manner 
which also exhibits a relationship between this and the original problem of counting the number of 
maximal independent sets of nodes. 

In this section, let 7* be the tree obtained from the tree T by appending a single pendant 
edge to each node of T. 

Lemma 5: For any tree T, //(J* ) = ju* (T). 

Proof: Let Thave nodes V(T) - {v1? v2,..., vn) and J* have additional nodes {wly w2, ...,wn}, 
where wi has v7 as its only neighbor, for 1 < i < n. For any set of nodes S, it is immediate that S is 
an independent set of nodes in T if and only if S*=S*u{wi\vi <£S} is a maximal independent set 
of nodes in T*. • 

If terminal subtrees are systematically removed from J* until it is empty, one finds, as will be 
shown in Lemma 6, that the collection of identified root nodes forms a minimum node cover of 
the original tree T. The number of these covering nodes is equal to J3X(T), a relationship that 
holds for amy triangle-free graph [1, p. 171]. Let fi0(T) be the node independence number of the 
tree T. Then, if J has n nodes, n - /?0(T) = PX{T) is the size of a smallest node cover of T. 

Lemma 6: For any tree T, t(T*) = /^(T). 

Proof: Induct on the value of t{T*), and first consider the case in which t(T*) = 0. Then T* = 
K^ and T = Kl9 and the base case is established. Now, suppose Tis a tree with t(T*) = m>\ and 
that the lemma holds for all similarly constructed trees 7* for which t(T*) < m. Let $ be any 
terminal subtree of 7*. Then t(T* -S) = t(T*) - I and, by the induction hypothesis, 

t(T*-S) = n-\SnT\-fi0(T-SnT) = n-fi0(T)-l. 
The result follows. D 

The number of nodes in Tis /^(J7*) and, from Lemma 6 and Theorems 1, 2, and 4, we have 
the following bounds on fi*{T). 

Theorem 5: Let 77be any tree on n > 2 nodes with fix - PX{T). Then 

max{Fw+2,2"-A +2 A -1} <^{T) <3^2"-2^+l+ 2^~\ 

It is known [2] that //*(i^) = i^+2, where Pn is the path on n nodes. Therefore, we have 
ju{T) - Fpi+2 for trees T constructed from a path on fix =PX(T) nodes with each node having one 
or more degree-one neighbors appended to it. These trees were introduced in the discussion prior 
to Theorem 1 and were shown to be a generalization of the extended paths given in [3]. The 
above has given an alternate proof for the number of MIS in such trees and reaffirms that they 
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represent an infinite class of trees having the smallest number of MIS for a given number of maxi-
mum independent edges. 

An infinite class of trees satissfying the bounds of Theorem 4 can be constructed with the aid 
of Lemmas 5 and 6. First, we will form a tree T for which /i*(7) = 3A_12W"2/?1+1+2^_1, the 
upper bound of Theorem 5. For any positive integers t and /?l3 2t<j3l, construct a star on 
Px -1 +1 nodes. Next, append a degree-one node to t - 1 of the leaf nodes of the star, as in 
Figure 3, and let this tree be T. Observe that PX{T) = t, t(T) = 1, and the number of nodes is flv 

1 2 0x-2t + \ 

1 2 t-l 

FIGURES 

Now consider the number of independent sets of nodes in this tree. First, examine the inde-
pendent sets of nodes not containing the center node v. Node v has fil - 2t +1 degree-one 
neighbors that can be members of an independent set of nodes in 2^1_2f+1 ways. It also has t - l 
degree-two neighbors, each with a degree-one neighbor. A degree-two node and its degree-one 
neighbor can contribute to an independent set of nodes in any of three ways: either node individu-
ally or neither node. Thus, there are 3f_1 ways to select independent sets of these nodes. 
Together, we have a total of 2t~l2^l~2t+l ways to form independent sets of nodes not including 
node v. When node v is included, only the t - 1 nodes distance two from v can be used. There 
are 2r_1 such sets. The total now is 3(-l2^~2t+l + 2'"1 and, since t^ft^T) and px is the number of 
nodes, Tis a tree that leads to the upper bound of Theorem 5. Now, for any n> 2/?1? construct 
J * by appending a degree-one node to every node of T. Then fli(T*)=/31, t(T*) = t, and 
Lemma 6 shows that the number of Mis in J * is 3'-^-2^+1 + 2f_1

3 the upper bound of Theorem 
4. To obtain the desired number of nodes n, merely append a total of n - 2f3l degree-one nodes to 
any node(s) already having at least one such neighbor. 
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