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In 1949 the Indian mathematician D. R. Kaprekar discovered a curious relationship between 
the number 6174 and other 4-digit numbers. For any 4-digit number n, whose digits are not all 
the same, let ri and n" be the numbers formed by arranging the digits of n in descending and 
ascending order, respectively. Find the difference of these two numbers: T(n) = nf -nf!. Repeat 
this process, known as the Kaprekar routine, on T{ri). In 7 or fewer steps, the number 6174 will 
occur. Moreover, 6174 is invariant; that is, J(6174) = 6174. 

In the literature it is common to generalize the Kaprekar routine and apply it to any Ar-digit 
number in base g. Since there are only a finite number of &-digit numbers, repeated applications 
of T always become periodic. The result is not necessarily a single invariant; more frequently one 
or more cycles occur. The characterization of such cycles is a difficult problem which has not 
been completely solved. Among the questions studied are the following: Given k, for what 
value(s) of g does the Kaprekar routine produce a single invariant? When nontrivial cycles arise 
for a given g and k, how many cycles are there and what are their lengths? This author, among 
others, has studied these problems as well as many other fascinating questions associated with the 
above procedure. (See [1]-[12].) 

Recently I was describing the Kaprekar routine to faculty colleagues. To demonstrate that 
not all &-digit numbers in base 10 give rise to a constant, I chose to illustrate the routine for 
2-digit numbers. In that case, either one or two applications of J yields one of the numbers in the 
cycle 

63 -> 27 -» 45 -> 09 -> 81 -> 63. 
Embarrassingly, I made an arithmetic mistake, writing T(96) = 96 - 69 = 37 instead of J(96) = 27. 
Arleigh Bell, Associate Professor of Economics, asked what would happen if 10 or any other 
number r were always added to T(n). What would the cycles look like in that case? Could there 
be a Kaprekar constant for some number rl This paper is an answer to his questions. 

As is the usual practice, we will consider Bell's questions for a general base g. We will repre-
sent a 2-digit, base g number n = a'g + a, 0 < a', a < g, byn = [a' a]. The Bell modification of 
the Kaprekar routine is a function K^r, r^{n) defined in the following manner. Let \r' r] be a 
fixed 2-digit, base g number less than [1 g-l]; that is, r' = 0 or 1, 0 < r < g-1 if r' = 0, and 
0<r<g-2i£r' = l. Then, for n = [a' a] 

K{r,r](n)=\[a< a]-[aa'Mr* r]. 

When the context is clear, we will omit the subscript and simply write K{ri). To see why we 
require \r' r] <[1 g-l], note that 

\[a' a]-[a a']\=[\af -a\-l g-\a'-a\\ 

Now \a'-a\-l<g-2, so \[af a]-[a a']\<[g-2 1]. Thus, the restriction [r' r]<[\ g-l] 
insures that K(n) is a 2-digit number. 

Since there are only a finite number of 2-digit, base g numbers, the sequence 

n,K{n),K\n\K\n),... 
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must eventually repeat. If, for a given n, Kl (n) = n, where i is as small as possible, then we say 
that n is in a cycle of length /. We will denote a iT-cycle by (nv n2,..., nt), where nj+l - K(rij) for 
1 < j < i -1 and i\ = Kfa) We wish to characterize those n which are in cycles and to determine 
the lengths of these cycles. 

For n - [af a], d =\a'-a\ is called the digit difference of n. Observe that, if 0 < d, then 

\\a' a]-[a a']\=[d-l g-d\ 

Thus, i£n = [a' a],m = [bf b\ and d =\af - a\=\bf - b\, then K(n) = K(m). In particular, if n is a 
2-digit number whose digit difference is d, K(ri) equals 

[d r-d] ifr' = OandO<<i<r 
^x [d-l g-(d-r)] ifrf = Omdr<d<g 
( ) [rf + 1 r-d] ifr' = landO<rf<r 

[d g-(d-r)] ifrr = lmdr<d<g. 

Using (1), it is easy to see that the digit difference of K(n) is 
\r-2d\ ifr' = OandO<rf<r 
\g+r + l-2d\ \fr' = 0mdr<d<g 

W \r-l-2d\ ifr' = l andO<t /<r 
\g+r-2d\ if r' = 1 andr <d <g. 

We will denote the digit difference of K[r, r](n) in (2) by D^r, r](d) orD(d). Note that, if 
K([a' a]) = [bf b], then D(\a'-a\) =\bf -b\. Thus, each K^r, r]-cycle gives rise to a I\r, r]-cycle 
of the same length. If we can characterize the D-cycles, then we will have made substantial prog-
ress in characterizing the Z-cycles. That is, we will know how many such cycles there are and the 
length of each one. 

As an example, let g = 10, r' - 0, and r-1. That is, we wish to apply the routine to base 10 
numbers with 7, the added term. Using (2), we find 

D(0) = 7 D(l) = 5 D(2) = 3 D(3) = l D(4) = l 
D(5) = 3 D(6) = 5 Z)(7) = 7 D(S) = 2 D(9) = 0. 

Thus, the Z^-cycles are <1,5, 3) and (7). From these, it is easy to determine that the Z7-cycles 
are <34,16,52) and <70>. 

Examination of (2) shows that D(d) always has the form \s-2d\ for some s. Consequently, 
we will first study a function based on this observation. In particular, let s be a fixed positive inte-
ger. For d with 0 < d < s, define Fs(d) =\s-2d\. Since 0 < Fs(d) < s, cycles must occur. The 
following observations about F, collected in a single theorem for convenience, are obvious. 

Theorem 1: Let s and / be positive integers and let d be an integer satisfying 0 < d < s. Then 
(a) Fs(s) = s, so (s) is an Fs-cycle of length 1. 
(b) Fis(id) = iFs(d) 
(c) d is in an Fs-cycle if and only if id is in an Fis-cycle. In particular, {dud2,...,dn) is an 

Fs -cycle if and only if (idl9 id2,..., idn) is an i^-cycle. 
(d) FT

S (d) is congruent to either 21 d or -2ld modulo s. D 
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For convenience, we will use the notation Fl
s (d) = ±2*d (mod s) to represent statement (d) in 

Theorem 1. 

Theorem 2: Suppose 2k\s. Let d be an integer satisfying 0 < d < s. If d is in an Fs -cycle, then 
2k\\d. 

Proof: Since 2k\s, s = 2kt where 0 < k and t is an odd positive integer. Write d-2lw with 0 < / 
and w odd. W^F(d) = F(21w) = \2kt-21+lw\. So 

2i+l\\F(d) if 0 < / < £ - ! 
2k+l\F(d) ifi = k-l 
2k\\F(d) ifi>k-l 

Thus, 2J\FJ(d) f o r y < k - l and 2*||Fy(<i) fork + l<j. Consequently, d is in a cycle only if 
2k\\d. U 

Corollary 1: Suppose 2k\s. Let d be an integer satisfying 0 < d < s. Then d is in an Fs-cycle if 
and only if 2k ||d. 

Proof: First, suppose s is odd. By Theorem 2, it is sufficient to show that if d is odd, then it is in 
a cycle. Since £ and d are odd, (s+d)/2 and (s-d)/2 are both nonnegative integers less than 
or equal to s. One of these numbers is odd and the other is even. Moreover, F((s + d)/2) = d 
and F{{s-d)l2)-d. Consequently, d has an odd predecessor. Since this is true for all odd 
integers between 0 and s, d must be in a cycle. 

The case when s is even follows immediately using Theorem 2 and Theorem 1(c). • 

Corollary 2: An integer s has only one Fs -cycle, namely (s), if and only if s - 2k for some k. 

Proof: The proof is immediate using Theorem 1(a) and Corollary 1. D 

By the results above, to characterize F-cycles it is sufficient to determine cycles for odd s. 
Additionally, we need only consider those d which are odd, have gcd(J, s) = 1 and satisfy 
1 < d < s-2. We will call cycles containing such d nontrivial. All other cycles are trivial since 
they may be obtained using (a) and (c) of Theorem 1. 

We will illustrate the comments above by finding the F-cycles for s = 33. By Corollary 1, 
only odd integers are in a cycle. Nontrivial F-cycles for s = 3 and s = 11 are (1) and (1, 9, 7,3,5), 
respectively. Thus, by Theorem 1(c), 

(3) <11>, (3,27,21, 9,15>,<33> 

are trivial F-cycles for s = 33. We now want to calculate the nontrivial F-cycles. An efficient 
method, described for the general case and then applied to s = 33, is as follows. By Theorem 
1(d), F(d) is congruent to either 2d or -2d modulo s. For s and d odd, exactly one of the numbers 
2d or -2d is congruent modulo s to an odd positive integer less than s. So to compute the cycle 
containing d, it is sufficient to calculate ±2F'(d) = ±2F(FJ~l(d)), choosing the appropriate sign 
so that the result modulo s is an odd integer. Applying this to our example s = 33 with d = 1 
gives 1 , -2 = 31, 62 = 29, 58 = 25, 50=17, 34 = 1, which yields theF-cycle 

(4) <1,31,29,25,17). 
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At this point we check to see if all odd integers d, 1 < d < s, are accounted for. If not, we repeat 
the above procedure. In the present example, d= 5 is not contained in any of the cycles in (3) or 
(4). So we consider 5, - 1 0 = 23, 46 = 13, - 2 6 = 7, - 1 4 = 19, 38 = 5, which gives 

(5) <5, 23,13,7,19). 

Thus, there are five F33-cycles which are given in (3), (4), and (5). 
For future reference, we record the Fs -cycles for 0 < s < 15: 

s 
0 
1 
2 
3 
4 
5 
6 
7 

Fs - cycles 
<o> 
<1> 
(2) 
<1>, <3> 
<4> 
(1,3), <5> 
(2), <6> 
(1,5,3), <7> 

s 
8 
9 

10 
11 
12 
13 
14 
15 

Fs - cycles 
<8> 
(1,7,5) , (3), (9) 
<2,6>, <10> 
(1,9,7,3,5), (11) 
(4), (12) 
(1,11,9,5,3,7), (13) 
(2,10,6), (14) 
(1,13,11,7), (3,9), (5), (15) 

Theorem 3: Let s be an odd positive integer and let m be the smallest integer such that 2m = ±1 
(mod s). Then each nontrivial Fs -cycle is of length m and there are <f>(s)/2m such cycles, where 
<fi(s) is the Euler phi function. 

Proof: As before, we write ±1 to indicate that 2m is congruent modulo s to either 1 or - 1 . Sup-
pose d is odd with gcd(d, s) = l and i is the smallest integer such that Fl{d) - d. That is, we 
assume that d is a nontrivial cycle of length /'. By Theorem 1(d), F1(d) = ±21d (mod s), so 
±21d = d (mod s). Since gcd(rf, s) = 1, 21 = ±1 (mod s). Consequently, each cycle has length 
i-m. There are (j)(s)l2 odd positive integers less than s which are relatively prime to s. 
Therefore, there are (j)(s) 12m nontrivial F-cycles. D 

The smallest positive integer k such that 2k = 1 (mod s) is called the order of 2 modulo s and 
is denoted by ord^2. 

Corollary 3: Let s be an odd positive integer and let m be the smallest integer such that 2m = ±1 
(mod s). If 2m = + 1 (mod s), then each nontrivial Fs-cycle has length equal to ord^2; otherwise, 
the length equals (ord5.2)/2. 

Proof: If 2m = +1 (mod 5), then ord52 = m and the result follows immediately from Theorem 3. 
If 2m = - 1 (mod 5), then 22m = +1 (mod s). By a well-known theorem from Number Theory, 

k12m where k - ord22. If A: is odd, then k\m and m-kq for some q. But this implies that 2m = 
(2k)q = 1 (mod s), which is a contradiction. Thus, it must be the case that k is even and (k/2)\m. 
If (k/2)<m, thenm = (k/2)qwith \<q. But then 2(k/2)2 =1 (mod 5), which contradicts the 
choice of m. Thus, m- kl2- (ord^2)/2. D 

Corollary 4: Let/? be an odd prime. Then the length of each nontrivial i^-cycle equals 

/w = ord/,2/gcd(o'rd/,2,2). 

Proof: Let m be the smallest integer such that 2m = ±1 (mod/?). The proof of Corollary 3 shows 
that if 2m = - 1 (mod/?), then ordp2 is even and m = oxdp2l2 = ord/?2/gcd(ord/32, 2). 
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If 2m = 1 (mod/?) with m = ord;?2, then m must be odd. For if m were even, then (2m/2)2 = 1 
(mod/?). Since/? is prime, 2m/2 = ±1 (mod/?), which is a contradiction to the choice of m. Thus, 
m = ord;?2 = ord;?2/gcd(ord;32,2). D 

Corollary 5: Let 5 be an odd positive integer and suppose 2 is a primitive root of s. Then s has 
only one nontrivial Fs -cycle. 

Proof: Since 2 is a primitive root of s, ord^2 = </>(s). Moreover, there exists a unique positive 
integer / less than </>($) such that 2l = -1 (mod s). By Corollary 3, the length of each nontrivial 
cycle is (f>(s)/2. Consequently, by Theorem 3, there is only one such cycle. • 

We now state and prove three technical lemmas which will be useful when we apply this 
work to Z)-cycles. 
Lemma 1: Let s = g+r +1 and d be an integer satisfying r <d <g and r < F(d) < g. Then r < 
g/2. 
Proof: Suppose, to the contrary, that gl2<r. Since, by assumption, r<d, g/2<d, which 
implies g + r + \-2d<r. Also, d<g<g/2 + r so that 2d-(g+r + l) <r. Thus, 

Fs(d)=\g+r + l-2d\<r, 

which is a contradiction to the hypothesis. D 

Lemma 2: Let s-g+r and d be an integer satisfying r<d<g and r <F(d)<g. Then 
r<gl2. 
Proof: The proof is similar to that of Lemma 1. • 

Lemma 3: Let s-g + r. If r has a predecessor under Fs, then 2\g. 

Proof: Suppose there exists d such that Fs (d) = r. Then either g+r-2d-rox2d-{g + r) = r. 
So either d equals g/2 or r + g/2. In either case, 2|g. • 

We are now in a position to characterize £>-cycles. 

Theorem 4: Let g be a positive integer and r an integer satisfying 0<r <g-l. All i^.-cycles 
will be D^0 r]-cycles. lfr<g/2 and there exists a <i such that r <Fg+r+l(d) <g for 0 < /, then this 
Fg+r+i -cycle is also a Z|0 rj-cycle. 

Proof: Since the added term is [0 r] , the first two lines of (2) apply. From the first line, we see 
that all ̂ -cycles will be I\0 r]-cycles. In order for the second line to give I\0 r]-cycles, it must be 
the case that all din an Fg+r+l-cycle satisfy r <d <g. By Lemma 1, such cycles can occur only 
whenr<g72. D 

As a consequence of Theorem 4, in order to find all Z|0 rj-cycles for a given g, it is sufficient 
to examine all Fs -cycles for 0 < s < g + [(g +1) / 2]. For example, using (6), it is easy to find the 
I\0 r]-cycles for g = 10. These, as well as the corresponding K[0 r]-cycles, are: 

142 [MAY 



A VARIATION ON THE TWO-DIGIT KAPREKAR ROUTINE 

r 
0 
1 
2 
3 
4 
5 
6 
7 
8 

g+r + l 
11 
12 
13 
14 
15 

I\or] -cycles 
<0>, <1, 9,7,3,5) 

(1), (4) 
<2> 

<1>, <3> 
(4), <5> 

<1,3), <5> 
(2), <6> 

0,5,3), <7> 
<8> 

^[Or]" cycles 
<0>, <45,9,81,63,27) 

(10), (37) 
(20) 

(12), (30) 
(40), (49) 

(32,14), (50) 
(24), (60) 

(34,16,52), (70) 
(80) 

(7) 

9 (1,7,5), (3), (9) (54,18,72), (36), (90) 

Theorem 5: Let g be a positive integer and let r be an integer satisfying 0 < r <g-2. All Fr_x-
cycles will be D^ rj-cycles. If r < g/2 and there exists a d such that r < Fg+r(d) <g for 0 < z, 
then this Fg+r-cycle is also a Efa r]-cycle. If 2\g, and if F^+r(r +1) = r for some j , then r is in a 
Lfa r]-cycle. 

Proof: Since the added term is [1 r ] , the third and fourth lines of (2) apply. From the third, we 
see that all Fr_l-cycles will be Z^ rj-cycles. In order for the fourth to give Z^ rj-cycles, it must be 
the case that all din an Fg+r-cycle satisfy r <d <g. By Lemma 2, cycles such as these can occur 
only when r < g 12. There is one more way in which JC^ rj-cycles can arise. Note that D^ r] (r) = 
r + l and Z^ r](r) = F^~l

r(r + l) for 2< / . So if, for some7, F^+r(r + l) = r , then r will be in a 
£|i rfcycle e v e n though it may not be in an Fg+r -cycle. By Lemma 3, in order for r to have an 
Fg+r predecessor, g must be even. • 

Finding D^ rj-cycles which do not contain r is similar to finding Z|0 rj-cycles. In particular, 
we examing Fs-cycles for 1 < s < g - 3 andg^s<g-\-[(g-l)/2]. For example, again using (6), 
it is easy to find these cycles for g = 10. 

r 
0 
1 
2 
3 
4 
5 
6 
7 

r - 1 

0 
1 
2 
3 
4 
5 
6 

# + r 
10 
11 
12 
13 
14 

D^ r] - cycles 
(2,6) 

(0) 
OX (4) 

(2) 
(1), (3) 

(4) 
(1,3), (5) 
(2), (6) 

K^ r ] - cycles 
(64,28) 

(11) 
(21), (48) 

(31) 
(23), (41) 

(51) 
(43,25), (61) 

(35), (71) 

(8) 

8 7 (1,5,3), <7> (45,27,63), (81) 

Missing from (8) are those Z|2 rj-cycles which contain r. The final theorems address this special 
case. 
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Theorem 6: L e t g b e an even positive integer. Whenr equals 1, g/2-2 org/2-l, then 

<2 ,g-3 ? . . . ,F ; + 1 ( l ) , . . . ? l )wi th2</ 

(9) (g/2-2,g/2-\,g/2) 
{gl2-\gl2) 

are D^ rj-cycles, respectively. 

Proof: The last two cases are easily verified. For the first, by Corollary 1, 1 is in an i^+1-cycle; 
in particular 

< l , ^ - l ^ - 3 , . . . , ^ + 1 ( l ) , . . . , l > . 

Since Z^! rj(l) = 2 and D^ r](2) = g - 3 , applying the D^ ^-algorithm gives 

< 2 ^ - 3 , . . . , ^ + 1 ( l ) , . . . , l ) . D 

Theorem 7: Let g and r be positive integers. If r is in an D^ rj-cycle different from those in (9), 
then r <g/4-l. 

Proof: By Theorem 5, since r is in an D^ r]-cycle, F£+r(r + 1) -r for some 0 <j. If j = 1, then 
r = g 12 - , contradicting the hypothesis. Thus, 2 < j . Now, 

^r](r) = F^(r + l) = Fg+r(g-r-2)=\g-3r-4\. 

By Lemma 2 and Theorem 6, 1 <r < g/2-2 so thatZ^ r ] ( r) = g-3r-4. If r is in an Z^ r]-
cycle, then r < D^ r] (r). This implies r < g 14 - 1 . • 

For g= 10, by Theorem 6, the following D^x rj-cycles may be added to the list in (8): 

r E\ir]- cycles K[X r] - cycles 
1 <1,2,7,3,5) (56,20,29,74,38) 

^1UJ 3 <3,4,5) (58,40,49) 
4 (4,5) (59,50) 

By Theorem 7, these are the only D^ r]-cycles that contain r. Thus, (7), (8), and (10) comprise a 
complete list of all E[r, r] -cycles for g = 10. 
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