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1. RATIONAL CHEBYSHEV APPROXIMATIONS OF ANALYTIC FUNCTIONS 
We proceed to establish the main result of this paper: a general procedure to obtain rational 

Chevyshev approximations of analytic functions. Let f(z) be analytic at zQ. Then, by composi-
tion, g(z) - / (cos z + z0 -1) is analytic at the origin. Hence, we can write 

oo 2w 

g(z) = f(cosz + z0-l) = Y1gV"\0)—- ( L 1 ) 

If an explicit expansion of /(cosz + z 0 - l ) is not available, then successive coefficients in (1.1) 
are found directly from the formula for Maclaurin expansions, i.e., by simply calculating succes-
sive derivatives of (1.1) and setting z = 0. To wit, 

g(0) = f(z0), (1.2) 

*"(0) = - / ' (« , ) , (1.3) 

S(iv>(0) = 3/"(z0) + /'(z0X 0-4) 

^i>(0) = -15/ '"(20)-15/"(20)-/ ' (z0) , (1.5) 

g^(Q) = 105/(iv)(z0) + 210/"'(2o) + 63/"(zo) +/'(*„), (1.6) 

S(x)(0) = -945/W(z0)-3150/ ( i v>(z0)-2205/ '"(Z o)-255/"(z0)-/ ' (U (1-7) 

g™ (0) = 10395/(vi) (z0) + 51975/W (z0) + 65835/(iv) (z0) + 21120/ '"(z0) 
+ I023f"(z0) + f'(z0), (1.8) 

g(xiv)(0) = -135135/(vii)(z0)-945945/(vi)(z0)-1891890/(v)(z0)-12O120O/(iv)(z0) 

-195195/'"(z0)-4095/"(z0)-/ '(zoX (I-9) 
etc.; the derivatives of odd order at the origin being at zero, since g{z) is an even function of z. 

Now, consider the expression 

g(z) « Ax cos z - A2g(z) cos z + A3 cos 2z - A4g(z) cos 2z + • • • 
+ A2s_l cos sz-A2sg(z) cos sz, (110) 

where the Ak's are constants to be determined, and the «in (1.10) is to be interpreted in the sense 
that the Maclaurin expansions of both sides agree through the first 25 terms. 

Note that both sides of (1.10) are, of course, even, as they should be. 
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Observe that the Cauchy product of g(z) and cos mz is 

• " » g^~2k\0)(-l)km2kz2n 

g(z)cosmz = > > ^-^— . (\ i i \ 

Since cos mz is entire, the above Cauchy product will have the same circle of convergence that 
equation (1.1) has (see [4]). 

Using (1.11) to equate powers of z in (1.10) we find, after multiplying through by (~l)n(2n)\, 

(-i)V2M)(o) = A -A2±{-\y-k(fX«"-2k\Q)+22"A, 
k=0 ^ * 

-A±{-\rk2lk{^X(2n-lk\^--^s2nA2s_x 
k=0 V J 

-A,±{-\rkH2^en-u\% (i.i2) 
k=o ^ ' 

where m is the binomial coefficient. 

Letting « = 0,1,2, . . . , - 2 J - 1 in (1.12), we find an algebraic system of 2s equations with Is 
unknowns for the determination of the As. Then, g(z) is found as 

,41cosz + v43cos2z + --- + ,425_1cossz 
1 + A2 cos z + A4 cos 2z + - • • + A2s cos sz 

Now, in equation (1.13), replace the above z by cos-1(z-z0 + 1), and make use of the defin-
ing equation for Chebyshev polynomials of the first kind Tn(z) - cos(n cos_1z), recalling the rela-
tion between f(z) and g(z) to obtain 

f(z) „ AJl(z-z0+l) + AJ2(z-z0+l) + --. + A2s_lTs(z-z0+l) 
r 0 ( r - z 0 + l ) + ̂ 2 r l ( r - r 0 + l ) + . - + ^ r , ( z - z 0 + l ) ' l j 

which gives a rational Chebyshev approximation of f(z) where the only restriction which has 
been assumed is analyticity of the function at z0. 

Power series of the form given in (1.1) are sometimes found Taylor-made in the literature. 
For instance, see [6], 

exp(cosz-l) = l - - z 2 + - z 4 - — / + ••-, (1.15) 
2 6 720 

where the general coefficient is 

t^.^i.l)^i^)^1QL^„.k.r)2iit (L16) 
n\(2n)\ £0 ~ r\ 

where (a)„ = a(a + l)(a + 2)•••(a + n-l), (a)0 = 1, a * 0 , is Pochhammer's symbol. In series 
(1.15), z0 = 0. 
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Also, see [5], 

logcosz = |;(-l) ' '(22' '-l)22"-152„z2n/[«(2«)!], (1.17) 
w = l 

where the B2n are Bernoulli numbers (see [1]). In the series (1.17), z0 = 1. 
It will be noticed that the coefficient of fU)(z0) in the sum for g(2/)(0), (/ = 1,2,..., 2s-1, 

7 = 1,2, . . . ,2s-1), exemplified in the list given at the beginning of this section, equations (1.2) 
through (1.9), is also the coefficient of cos jz, evaluated at z = 0, in 

-^(exp(cosz- l ) ) . 

This provides a simple computer algorithm for generating these coefficients. This observation is 
due to one of the authors (Rosenthal). 

2. ADAPTING THE ALGORITHM FOR THE GENERALIZED 
HYPERGEOMETRIC FUNCTION 

The method we have developed enables us to find, in simple fashion, a rational Chebyshev 
approximation for the generalized hypergeometric function pFq{z)\ 

^{al)n{a2)n'-{a )nzn 

pFq(al,a2,...9ap;bl9b2,...,bq;z) = l + 2,l „ / , (2.1) 

where none of the ft's is zero or a negative integer (see [14]). 
The derivative of (2.1) is given by (see [14]) 

a i a ^ ^ p F ( a 1 + l , a 2 + l , . . . , a + 1;^+1,62+1, ...,Z>+1; z). (2.2) 
bA'"ba 

The value of the hypergeometric function at the origin is 1. Hence, choosing z0 = 0, it is quite 
simple to determine successive derivatives of the pFq(z) at the origin to find, with the aid of 
equations (1.2) through (1.9), the values of g(z) and its derivatives at z = 0. 

Note that g(0) and its derivatives at the origin will be given as rational functions of the coef-
ficients of the pF (z). In particular, if these coefficients are themselves rational, then the rational 
Chebyshev approximation will involve only rational coefficients. 

As the reader no doubt knows, many known functions are special cases (at most with a multi-
plicative monomial) of the generalized hypergeometric function. We will choose Bessel functions, 

J"( z ) =T^°F l ("; 1 +";- } z 2) ' <2-3> 
to illustrate the algorithm. 

It will be recalled that we mentioned, following (2.2), that, if the parameters appearing in the 
hypergeometric function are rational numbers, then the A's, the solutions of the system of equa-
tions (1.12), are also rational numbers. This holds true in most of the important cases. For this 
reason, we found it desirable to make use of a program (we chose REDUCE [15]) that did not 
execute the operation of division, so that the 4̂'s would be given in fractional form. 
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We close this section by making â  comment that is probably obvious to the reader. If one 
wishes to go from a given s, the highest order of the Chebyshev polynomials in (1.14), to 5 + 1 in 
the system of equations (1.12), then the matrix of the coefficients for 5 + 1 will be the same as that 
for s, except that two rows and two columns will be added. Hence, knowing the inverse of the 
2s x 2s matrix one can find the inverse of the (2s + 2) x (2s+2) matrix by using the method of 
partitioning in the technique known as "inversion by bordering." 

3. ILLUSTRATING THE ALGORITHM 
We will now give some examples of rational Chebyshev approximations obtained by use of 

the procedure outlined in the previous section. To list the approximations, we will give them in 
the following format: 

f(z) „ azk(pQzn +Plz"-1 +p2z"~2 + ... + Pn_lZ+pn) 
Jy)~ b(qQzm+qlz>»-1+q2z>»-2+.~ + qm_lz + qm) ' 

where k+n<s, and m < s. For each s we will simply list the coefficients in (3.1). 

/ ( 2 ) = Jrp(2) 

5 = 2 

a = 4,k = 0,n = 2,p0 = 2,Pl = 0,p2 = -3; 
b = l,m = 2,q0 = 5,ql=0,q2=-l2. 

5 = 3 

a = -l,k = 0,n = 3,p0 = 69,Pl = 5l,p2 = -36&,p3 = -272; 
b = 1, m = 3, q0 = 23, qx = 17, q2 = 368, q3 = 272. 

5 = 6 

a = 12, k = 0, n = 6, p0 = 57 76742, pl = 0, p2 = -1838 79735, 
p3 = 0, p4 = 10070 89152, p5 = 0,p6 = -7895 61600; 

b = 1, m = 6, qQ = 60 35647, qx = 0,q2 = 3705 82236, q3 = 0, 
q4 = 97163 85024, q5 = 0,q6 = -94747 39200. 

The reader should observe that the magnitude of the coefficients increases quite rapidly with 
increasing s. We shall shortly see that the quality of the approximation also improves very rapidly 
as s increases. 

5=10 

a = 300,Ar = 0,w = 10, 

/V 
Pi. 
P4 
Pf, 
p*: 

PlQ 

= 2114 6357000545 36614, 
= -4 28033 7545019518 86781, 
= 28117868 03665 8189018624, 
= -6194 13498 85928 62663 77984, 
= 31326 83622 73236 69829 38624, 
= -23739 05902 96182 29215 88736; 

P\ 
/V 
/V 
Pi 
Po 

= 0, 
= 0, 
= 0, 
= o, 
= 0, 
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b = \, m = \0, 
?0 = 3272 5661414968 07057, g1 = 0, 
q2 = 9 84654 95148 64179 66500, q3 = 0, 
q4 = 1597 67150 04330 42594 24000, q5 = 0, 
gr6 = 15744170286 74100 8972160000, qn = 0, 
q% = 761762144097 57337 57624 32000, q9 = 0, 

g1Q = -71 21717 70888 54687 64766 20800. 

4. NUMERICAL VALUES AND GRAPHS OF SOME 
RATIONAL CHEBYSHEV APPROXIMATIONS 

In this section we present the results of evaluating the rational forms given in section 3. The 
runs for different values of the parameter 5 will be contrasted with the tabulated values given in 
[1]. The latter will be taken, for purposes of comparison, as exact values. 

z 
0. 
0. 
0, 
0, 
0, 
0. 
0, 
0. 
0, 
0, 
1. 
1. 
1. 
1. 
1. 
1. 
1, 
1. 
1 
1, 
2 
2 
2 
2 
2 
2 

,0 
,1 
,2 
,3 
,4 
.5 
,6 
,7 
.8 
,9 
.0 
.1 
.2 
,3 
.4 
,5 
.6 
.7 
.8 
.9 
.0 
.1 
.2 
.3 
.4 
.5 

Exact values 

M*) 
1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91200 
0.88120 
0.84628 
0.80752 
0.76519 
0.71962 
0.67113 
0.62008 
0.56685 
0.51182 
0.45540 
0.39798 
0.33998 
0.28181 
0.22389 
0.16660 
0.11036 
0.05553 
0.00250 
-0.04838 

00000 
15620 
49722 
62465 
82266 
98072 
48634 
08886 
73527 
37981 
76865 
20185 
27442 
59895 
51203 
76717 
21676 
48594 
64110 
85593 
07791 
69803 
22669 
97844 
76832 
37764 

00000 
66040 
39576 
38296 
59563 
40813 
97211 
07405 
50480 
22545 
57967 
27511 
64363 
61509 
74289 
35918 
39381 
46109 
42558 
74385 
41236 
31990 
22174 
45602 
97244 
68198 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

/(*) = •/„(*) 
s -

1.00000 
0.99748 
0.98983 
0.97662 
0.95714 
0.93023 
0.89411 
0.84607 
0.78181 
0.69433 
0.57142 
0.38991 
0.09999 
-0.42816 
-1.67272 
-8.00000 
10.60000 
4.53877 
3.31428 
2.79008 
2.50000 
2.31641 
2.19016 
2.09826 
2.02857 
1.97402 

2 

•/<>(*) 

00000 
95397 
05084 
33766 
28571 
25581 
76470 
32984 
81818 
96226 
85714 
59663 
99999 
90140 
72727 
00000 
00000 
55102 
57142 
26446 
00000 
79104 
39344 
98961 
14285 
59740 

00000 
48954 
74576 
23377 
42857 
39535 
58824 
29319 
18182 
41509 
28571 
86554 
99999 
84507 
27273 
00000 
00000 
04082 
85714 
28099 
00000 
47761 
26230 
93771 
71429 
25974 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

5 = i 

1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91198 
0.88114 
0.84615 
0.80725 
0.76470 
0.71876 
0.66972 
0.61786 
0.56347 
0.50684 
0.44827 
0.38803 
0.32640 
0.26364 
0.20000 
0.13571 
0.07101 
0.00610 
-0.05882 
-0.12359 

3 

•/<>(*) 

00000 
15615 
49376 
58545 
60396 
15384 
04400 
00848 
38461 
75847 
58823 
81580 
47706 
31995 
43875 
93150 
58620 
59978 
33264 
09994 
00000 
77853 
72744 
61531 
35294 
55056 

00000 
24048 
55860 
68055 
03960 
61539 
97800 
99939 
53846 
70970 
52941 
47647 
42202 
47767 
27840 
68493 
68966 
82478 
03326 
90056 
00000 
99314 
72169 
23532 
11765 
17978 

Error at z = 0.1: 1.20E-05 
Error at z = 1.5: 8.512 
Error at z = 2.5:-2.022 

Error at z = 0.1: 5.42E-10 
Error at z = 1.5: 0.005 
Error at z = 2.5: 0.075 
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5 = 6 s = 10 
z 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

• / < > ( * ) 

1.00000 
0.99750 
0.99002 
0.97762 
0.96039 
0.93846 
0.91200 
0.88120 
0.84628 
0.80752 
0.76519 
0.71962 
0.67113 
0.62008 
0.56685 
0.51183 
0.45541 
0.39800 
0.34001 
0.28186 
0.22397 
0.16672 
0.11054 
0.05581 
0.00291 
-0.04780 

at z = 0, 
at z = 1, 
at z = 2. 

00000 
15620 
49722 
62465 
82266 
98072 
48632 
08863 
73359 
36414 
88991 
28437 
39900 
81243 
88740 
42373 
34601 
38749 
77192 
89650 
01919 
95358 
77454 
53758 
01468 
55089 

.1: 0 

00000 
66040 
39576 
38249 
57938 
14225 
17224 
32675 
87120 
25774 
81058 
77746 
87712 
85951 
92599 
87263 
77972 
36571 
20127 
63377 
55021 
25093 
23837 
52507 
75270 
54713 

,5:-6.57E-06 
,5:-5.78E-04 

Z 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

• / < > ( * ) 

1.00000 00000 
0.99750 15620 
0.99002 49722 
0.97762 62465 
0.96039 82266 
0.93846 98072 
0.91200 48634 
0.88120 08886 
0.84628 73527 
0.80752 37981 
0.76519 76865 
0.71962 20185 
0.67113 27442 
0.62008 59895 
0.56685 51203 
0.51182 76717 
0.45540 21676 
0.39798 48594 
0.33998 64110 
0.28181 85593 
0.22389 07791 
0.16660 69803 
0.11036 22669 
0.05553 97845 
0.00250 76834 
-0.04838 37761 

at z = 0.1: 0 

00000 
66040 
39576 
38296 
59564 
40813 
97211 
07405 
50480 
22545 
57967 
27512 
64364 
61514 
74305 
35967 
39523 
46502 
43589 
76972 
47447 
46316 
54003 
13916 
39234 
81732 

at z = 1.5:-4.90E-14 
at z = 2.5:-2.86E-10 

The algorithm is seen to be very stable. As the value of s increases, the quality of the 
approximations improves notably. The last example above, J0(z) for s = 10, gives remarkable 
agreement throughout the range 0 <\z\< 2.5. 

5. ZEROS OF THE DENOMINATOR POLYNOMIALS OF THE 
RATIONAL CHEBYSHEV APPROXIMATIONS 

If in equation (1.10) we let s increase without bound, then both sides will represent the same 
function since their Maclaurin expansions agree for all terms. In this case, equation (1.13) will 
have an infinite series in both the numerator and denominator. The values of z for which the 
series in the denominator converges to zero will be singular points of g(z\ unless the series in the 
numerator also converges to zero there. As equation (1.13) stands, it being an approximate rela-
tion, it is conceivable that the right-hand side may have poles which are not singular points of the 
function g(z). This implies, of course, that the right-hand side of equation (1.14) may also have 
poles which are not singular points off[z). These would be the so-called spurious poles. Let us 
look at this phenomenon somewhat more closely for the example given in Section 3. 

The denominator polynomial of the rational Chebyshev approximation for the Bessel function 
J0(z) corresponding to s = 10 has real zeros at the points 

z = ±0.95778 12766 24968 22726 05909 45945. 
Yet, the graph given in Figure 1, and the table of values of this function do not seem to indicate 
any abnormal behavior in the neighborhood of this point. However, if we analyze the rational 
approximation within +E-18 of this point, then the rational form is seen to undergo marked oscil-
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lations with nearly infinite slope. Nevertheless, as soon as we are within +E-17 of the point in 
question, the erratic behavior disappears and the algorithm again represents the correct values of 
the Bessel function J0 (z). 

Figure 1 
This figure shows the Bessel function of the first kind of order zero, JQ (z) 
plotted against the rational Chebyshev approximation corresponding to s = 10. 
After z = 9, the Bessel function continues to oscillate, while the approximation 
separates from this behavior. The two functions move apart after z = 7. The al-
gorithm approximates the first zero of the Bessel function to be 2.40482 55580, 
and the second zero to be 5.51960 87207. These results compare favorably 
with the correct values 2.40482 55577 and 5.52007 81103 given in [1]. 

We shall now speak of the significance of these roots. The highly localized character of the 
oscillation indicates that the numerator polynomial also has zeros which are very close to the 
zeros of the denominator polynomial. This is indeed the case for all of the examples we studied. 
The numerator polynomial of the s = 10 approximation of the Bessel function, for instance, has 
real zeros at the points 

z = ±0.95778 12766 24968 22150 32913 84229 
which mattch the zeros of the denominator polynomial through seventeen decimal places. The 
oscillatory behavior is then simply a reflection of the computer's arithmetic inability to handle 0/0. 
The algorithm, we see, is a self-correcting one that introduces zeros in the numerator and denomi-
nator polynomials in a way that ensures the correct approximation to the function for a given 
value of s. 

In essence, our method provides a rational approximation Ps(z)IQs{z) such that its Taylor 
expansion about the point z0 agrees with the Taylor expansion of f{z) through the first 2s terms. 
This requirement may be written as 

Qs(z)f(z)-Ps(z) = (z-z0)2s+1fjck(z-z0)k 

and it is equivalent to the criterion for choosing the sth diagonal entry in the Pade table for z0 = 0. 
Because of the proximity of the real zeros of the numerator and denominator polynomials of 

the Bessel function approximation corresponding to s = 10, we chose to divide out the zeros and 
try out the outcome against the tabulated values given before. The resulting expression is: 
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a = 300, k = 0, n = 8 
p0 = 2114 63570 00545 36614.00000 00000 0, p1 = 0, 
p2 = -4 26093 90407 09759 89175.46176 79548 8, p3 = 0, 
p4 =277 26992 9353691260 65928.2780188600 0, p5 = 0, 
/76 = -5939 7828124995 7947189316.44693 04600 0, p 1 = 0, 
p% = 25 878 0063184966 4222173 861.61878 68000 0, 

b = l,m = S 

q0 = 3272 56614 14968 07057.00000 00000 0, ql = 0, 
q2 = 9 87657 02358 79227 26257.6835176325 9, q3 = 0, 
q4 = 1606 73172 24978 36037 41999.24516 09500 0, q5 = 0, 
q6 = 158915 63013 73742 21409 56470.0241510000 0, q1 = 0, 
q8 = 77 6340189554 89925 73188 73022.34814 00000 0 

The tabulated values resulting from this approximation are: 

z J0(z) 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

Error 
Error 
Error 

1.00000 00000 
0.99750 15620 
0.99002 49722 
0.97762 62465 
0.96039 82266 
0.93846 98072 
0.91200 48634 
0.88120 08886 
0.84628 73527 
0.80752 37981 
0.76519 76865 
0.71962 20185 
0.67113 27442 
0.62008 59895 
0.56685 51203 
0.51182 76717 
0.45540 21676 
0.39798 48594 
0.33998 64110 
0.28181 85593 
0.22389 07791 
0.16660 69803 
0.11036 22669 
0.05553 97845 
0.00250 76834 
-0.04838 37761 

at z = 0.1: 0 

00000 
66040 
39576 
38296 
59564 
40813 
97211 
07405 
50480 
22545 
57967 
27512 
64364 
61514 
74305 
35967 
39523 
46502 
43589 
76972 
47447 
46316 
54003 
13916 
39234 
81732 

at z = 1.5:-4.90E-14 
at z = 2.5:-2.86E-10 

These are exactly the same values, to fifteen-decimal accuracy, obtained with the s = 10 
approximation of the Bessel function J0(z) before the roots are divided out!—These results imply 
a substantial saving in computer time since the number of divisions required for a given approxi-
mation is reduced by two. 

A comment is in order, though it is probably obvious to the reader. The results shown in the 
above table were obtained by dividing the numerator polynomial by its real roots, and the denomi-
nator polynomial by its corresponding real roots. Slightly better accuracy is obtained (though the 
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above table does not indicate it) if we divide both numerator and denominator polynomials by 
either the real roots of the numerator or the real roots of the denominator since, in this case, all 
we are doing is dividing numerator and denominator of the s = 10 approximation by a common 
factor. 

It is worth emphasizing that the rational Chebyshev approximations our algorithm provides 
are not optimal, in the sense that error does not remain constant within the range of approxima-
tion. Rather, error is least when one is sufficiently near the point z0 and the quality of the approx-
imation deteriorates as we move away from the point in question. The importance of the method 
lies, we believe, in the extreme simplicity with which it can provide rational Chebyshev approxi-
mations of any accuracy for a wide variety of functions. These nonoptimal approximations may 
easily be used to obtain optimal Chebyshev approximations. Several algorithms have been devel-
oped to this effect. 

Let us speak now of the origin of the problem that has occupied us in the last five sections. 

6, SOME HISTORY 
About one hundred and twenty-five years ago, the Russian mathematician Pafnuty Lvovich 

Chebyshev (1821-1894) set himself the problem of finding the best rational approximation of a 
continuous function specified on an interval [a, h]. Specifically, he wanted to determine parame-
ters p0,pl9 ...,/?„; q0,ql9...,qm in the expression 

qaxm+qxxm 1+-+qm 

where m and n are given, and s(x) is a function continuous on [a, b], so that the deviation of Q(x) 
from a chosen continuous function f(x), 

# e = max| / (x)-e(x) | (6.2) 
^ Q<X<b 

shall be a minimum. 
Chebyshev established the beautiful existence theorem [6; 2]: 

The function P(x), which deviates least from the function /(*) than does any 
other function of the type exemplified by equation (6.1) is completely character-
ized by the following property: If the function can be expressed in the form 

P(x) = s(x)— - u-g~ = s(x) 

where 0 < d < /?, 0 < T < m,b0^0 and the fraction j ~ is irreducible, then the 
number N of consecutive points of the interval [a,b] at which the difference 
f(x)-P(x), with alternate change of sign, takes on the value Hp, is not less 
than m + n + 2-d, where d- min(cr, T); in case P(x) = 0, then N>n + 2, 

Chebyshev did not provide a constructive approach to the problem of finding the rational 
approximations whose existence is guaranteed by the above theorem. He, and E. Solotarev did 
work out one example, based on the theory of Jacobian elliptic functions, that meets the require-
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ments of the theorem [16]. Since that time, though, many people have sought to obtain an expli-
cit method of attack for determining these rational approximations [8; 9; 10]. The problem is 
especially complicated by the fact that the class of continuous functions is a very broad one. Most 
of the methods of attack that have been developed deal with a more restrictive class of functions: 
bounded variation, analytic, or the like. 

A substantial advance was made by H. Pade in his now classic thesis of 1892 [13]. Pade's 
method, mentioned briefly at the end of the last section, yields excellent rational approximations 
of analytic functions by means of solutions of a system of linear algebraic equations [18]. The 
method is an extension of some earlier work of Frobenius [6]. However, it does not provide 
rational Chebyshev approximations. It is known that rational forms in Chebyshev polynomials 
yield better accuracy than ordinary rational forms [16]. 

Maehly gave a method for obtaining rational Chebyshev approximations of functions of 
bounded variation on the unit interval [12; 16]. It has the substantial disadvantage of requiring 
that the given function be first expanded in a series of Chebyshev polynomials. If the function is 
anywhere complicated, these expansions may be devilishly hard to obtain. 

To the best of our knowledge, no method is known for obtaining rational Chebyshev approxi-
mations that is better, more direct, or more powerful than the one we have presented in this 
paper. The method was discovered by one of the authors (Castellanos) as a result of his work on 
formulas to approximate n while in preparation of "The Ubiquitous n," Math. Magazine 61.2-3 
(April-June 1988). The delicate and time-consuming task of carrying the algorithm into a work-
ing computer program was done by the other author (Rosenthal). 
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