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INTRODUCTION 

In Liher Abaci (1202), Leonardo da Pisa posed and solved the following problem. 
A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many 
pairs of rabbits can be produced from that pair in a year if it is supposed that every month 
each pair begets a new pair which from the second month on becomes productive? 

The sequence obtained to solve this problem—the celebrated Fibonacci sequence 1, 1, 2, 3, 5, 8, 
13, 21, ...—appears in a large number of natural phenomena (see [2], [6]) and has natural appli-
cations in computer science (see [1]). 

Here we reformulate the rabbit problem to recover two generalizations of the Fibonacci 
sequence presented elsewhere (see [7], [8]). Then, using a fixed-point technique, we present an 
elementary proof of the convergence of the sequences of ratios of two successive generalized 
Fibonacci numbers. The limits of these sequences will be called here generalized golden num-
bers. Finally, we reconsider electrical schemes to generate these ratios (see also [3]). 

1. THE RABBIT PROBLEM REVISITED 

The modifications to the rabbit problem we would like to consider here are the possibility 
that the mature rabbits produce more than one new pair of rabbits, and also the possibility of an 
increase in the productivity.during the first few months. These two considerations lead to the 
following reformulation of the rabbit problem. 

A certain man put a pair of newborn male-female rabbits in a place surrounded on all sides by 
a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed 
that each month 
(a) a /-month old pair of male-female rabbits gives birth to (/' - \)s pair(s) of male-female 

rabbits until it is r-months old, and 
(b) a more than r-month old pair of male-female rabbits continues to give birth to (r - l)s 

pairs of male-female rabbits? 

In this formulation it is assumed that s is a positive integer. 
Let un be the total number of pairs of male-female rabbits at the nth month, and v'ln be the 

number of/-month old pairs of male-female rabbits at the nth month. Since v°n is the number of 
newborn pairs of male-female rabbits at the nth month, we have 

un=un_l+v% and v<=v°_;. (1) 

T h e n v£ = 0 forrc = - l ? - 2 , - 3 ? . . . (2a) 

v0° = l (2b) 
r +oo 

V„° = I ( / - 1 K + ] > > - 1 K for« = 1,2,3,... . (2c) 
i=\ i-r+l 
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Using (1), (2c) becomes 

and it follows that 

vJ^IVi, 
i=2 

un = 0 for n = - 1 , - 2 , - 3 , . . . 

n0 = l 

w„ - w„_! + J X ^ , forTI = 1,2,3,... . 
/=2 

(3a) 

(3b) 

(3c) 

Remark 1: For r = 2 we have the multi-nacci sequence of order s recently considered by Levine 
[7]. One interesting property of these sequences is 

^ - ^ + A - i = ( - s ) " -

Remark 2: For 5 = l w e have the r-generalized Fibonacci sequence introduced by Miles [8] and 
also studied by Flores [4] and Dubeau [3]. 

From these two remarks, we can call a r-generalized multi-nacci sequence of order s the 
sequence of un* s generated by (3). 

2e CONVERGENCE OF RATIOS 

In this section, we extend the method presented in [3] and [5] to obtain the limit of the 
sequence of ratios tn = unlun_x (n - 1,2, 3,...). Since the un'$ form an increasing sequence, we 
have tn > 1 for n - 1,2,3,.... From (3c) we have 

/„ = l + *£^(/ i*l ) , 
1=2 Un-\ 

and using the definition of t„, we obtain 

1 + *Z—I /i = l , . . . , r - l , 

* „ = < 
;= i 

1 l + s^—i n = r,r + l,r + 2,.... 
'TlVy 

The results of this section are then mainly based on the following two remarks. 

Remark 3: tn depends only on the preceding r - 1 values tn_h tn_2,..., *„_(r_i), and we can write 
tn = / Vn-l ? • • •, tn-(r-l) )• 

Remark 4: If /„_1?..., ?„_(>_!) are all greater than or equal to & > 0, then tn <fib,..., b) and if 
tn_i,..., ^_(r-i) are all less than or equal to b > 0, then tn> f(b,...,b). 
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Let us use the function /(•,...,•) to define another function F(-) as follows: F(x) = 
/ (x , . . . , x) or, explicitly, 

F(x) = \ + sJ^-^- forx^O. (4) 
7=2 X 

The convergence result we look for will be obtained from the study of the function F(-). The 
next lemma summarizes the main properties of F(). 

Lemmal: Let s>0 , r e{2,3,4,...} andx^O. Then 

[l + s(r-l) ifx = l, 
(a) F(i) = 1 5 ( x ^ - l ) . . t 

1 + r l f jC^l ; 
xr'1 (x-1) 

(h) FQ) is a strictly decreasing continuous convex function for x > 0; 

fiq) lim F(x) = +oo and lim F(x) = 1; 

(î > the equation x = F(x) has a unique solution T in the interval (0, + oo) and z is the unique 
positive root of the polynomial 

p(x) = xr-xr-l-s^xr-\ • /=2 

Remarks 3 and 4 and the fact that tk > 1 (A: > 1) suggest the construction of a sequence 
( M S such that 

bx = 1 < J* for £ > 1, 
f* < F(bl) = h2 forAr>l + ( r - l ) , 

b3=F(b2) < tk for£>l + 2 ( r - l ) , 
tk < F(h3) = b4 forifc>l + 3 ( r - l ) , 

b5=F(b4) < tk forA>l + 4 ( r - l ) , 
etc. 

We have the following results about the sequence {bt]^v 

Lemma 2: Let {^}£°i such that bx = 1 and bM = F(b£) for ^ = 1,2,3,..., then 

(a) the subsequence {#2*-i}£a is strictly increasing and the subsequence {b2e}^ is strictly 
decreasing; 

(b) for all / and j > 1, we have &2/_i < *2y» 

(c) there exists a positive constant /3 < 1 such that 0 < b2i+2 - b2M < f32i$(r -1) for I = 1,2, 
3,...; 

(d) the sequence {̂ }£Ti converges to the unique positive real root of the polynomial 

p(x) = xr-xr-l-sj^xr-\ 
j=2 
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Proof: (a) and (b) follow from l = bl<b2=F(bl), and if 0<a</3 , then l<F(fi)<F(a). To 
prove (c) we use (4) and consider 

7=2 

0 < b2£+2 -b2M = F(b2M) -F(b2£) = s j 

r - 2 / 

EI 

M-l 
_1_ 

- S®2t ®2£+\ ) 
u2lu2l+l 7=0 y=0 ^2^^2^+1 

1 <s(b2l-b2£+l) 

VlftllL+l 

(r-2 i V r - 2 i "\ 

jLad 7 7 X—rf 7 / 
V7=0 °2£ J\i=0 °2i+l J 

But 

then 

(Pitli ~l) y 1 = (Pn+i 1)b a n d y_JL_ 
,=n Dop b / = 0 02^+i #2^+1 l / ^ + l V 7=0 ^ 

f 
0 < ^2^+2 ^2M-1 - \®2£ V2M, 1 - i.r-1 

°2l+\ J 

Also, 1 < bk < 1 + s(r -1), then 1 < bk < [1 + s(r - 1)] , and it follows that 

0<1- ur-l 
< 1 -

1 
[1 + ^ - 1 ) 1 ̂r = P<1-

Hence, 0<b2£+2-h2M ^(b2e-b2M)p. Similarly, we can prove 0<b2£-b2M ^(b2i-b2£_l)[5, 
and we can conclude that 

o<b2£+2-b2£+1<ii2(b2£-b2£_l)<"'<ji2£(b2-bly 

But b2-b1 = s(r-l), and the result follows. Finally, from (c), the upperbounded increasing 
subsequence l^^+ilS m& the lower bounded decreasing subsequence {^2^)S both converge to 
the value z defined in Lemma 1. D 

Figure l,on the following page, describes the construction and the convergence of the 
sequence {b£}^0. 

We are now ready to prove the main results. 

Theorem 1: Let s> 0,r e{2, 3,4,5, ...},un as given by (3), and tn = un/un_1 forn>l. The 

sequence {tn}*=i converges to the unique positive root z of the polynomial 

p(x) = xr-xr-l-sYdxr-i. 
7=2 

Proof: From the way the sequences {tk}lZ\ and {fy}^ are generated, we have 

tk>b2M fork >l + 2£(r-I) and tk <b2i fork>l + (2£ + l)(r-l). 

The result follows from Lemma 2. • 
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y 

i 

; N̂ -

6 , = 1 bzb 

/ y = x 

?Xh b2 

FIGURE 1. Graph of y=F(x) 

Theorem 2: Let xbe considered as a function of x and 5. Then 

(a) for any fixed s > 0, we have 

and 

(i) T= forr = 2, 
2 

(ii) z increases as r increases, 

(Hi) lim = 1 + sfs; 
r-»+oo 

(b) for any fixed I, r ~ v^ for large s. 
Proof: For r - 2, r is the unique positive root of p(x) = x — x — s, which corresponds to 

the given formula. Because F(x) increases as r increases for fixed x and s, z increases as r 
increases. Also F(\ + Js) = \ + 4s- 4S 

a+^y T
<i+V^7 

then 

I+VS-- S < T < i+Vs 

and limr_>+00 T = 1 + yfs.. Also, from those formulas and inequalities, we obtain r~ Vs when 5 is 
large. D 

The table below presents values of % for some r and $. The last line of this table for r - +QO 
indicates lim^.^ r = 1 + Vs. 

272 [AUG. 



THE RABBIT PROBLEM REVISITED 

When r = 2 and s = 1, T corresponds to the golden number. For 5 = 1 andr e{2,3,...}? T 
has been called the r-generalized golden number. Hence, for s> 0 andr e{2, 3,...}, we could 
call T the r-generalized golden number of order s. 

Table of f Values for Given r and s 

\ s 
r > 

2 
3 
4 

5 

6 

1 7 
8 

9 

[ 10 
11 
12 

1 13 
14 

15 

16 
17 

IS 

19 

20 

21 

22 

23 

24 

25 

1 + « 

1 

1.6180340 

1.8392868 

1.9275620 

1.9659482 

1.9835828 

1.9919642 

1.9960312 

1.9980295 

1.9990186 

1.9995104 

1.9997555 

1.9998778 

1.9999389 

1.9999695 

1.9999847 

1.9999924 

1.9999962 

1.9999981 

1.9999990 

1.9999995 

1.9999998 

1.9999999 

1.9999999 

2.0000000 

2. 

2 

2.0000000 

2.2695308 

2,3593041 

2.3924637 

2.4054051 

2.4106054 

2.4127271 

2.4135994 

2,4139595 

2.4141084 

2.4141700 

2.4141955 

2.4142061 

2.4142105 

2.4142123 

2.4142130 

2.4142133 

2.4142135 

2.4142135 

2.4142135 

2.4142136 

2.4142136 

2.4142136 

2.4142136 

2.4142136 

3 

2.3027756 

2.5986745 

2.6868102 

2.7160633 

2.7262912 

2.7299574 

2.7312869 

2.7317715 

2.7319486 

2.7320134 

2.7320371 

2.7320458 

2.7320490 

2.7320501 

2.7320506 

2.7320507 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

2.7320508 

4 

2^615528 

2.8751298 

2.9611061 

2.9874051 

2.9958519 

2.9986240 

2.9995422 

2.9998475 

2.9999492 

2.9999831 

2.9999944 

2.9999981 

2.9999994 

2.9999998 

2.9999999 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3.0000000 

3. 

5 

2.7912878 

3.1179423 

3.2017404 

32257176 

32328999 j 

32350925 

32357669 

32359750 

32360392 

32360591 1 

32360652 

32360671 

32360677 

32360679 

32360680 1 

32360680 

32360680 

32360680 

32360680 

3.2360680 

3.2360680 

32360680 

32360680 

32360680 

32360680 | 

3. ELECTRICAL SCHEMES 

The method presented in [3] to generate the sequences of ratios {«„ /«„_i}£°i using electrical 
schemes can also be used here. Indeed, if 

n = -&-
k=2 J J 

which correspond to 1 + s(r -1) resistances connected in series. Also 

au 
*j+i *j+i 1 

Jc=2 

1 - + S I: I l 
UjMIUj_x £lUjMluj-k 

•+S% 

(5) 

(6) 

^/-1,/+1 k=2^j-k,i+k 

which correspond to l + s(r-1) resistances connected in parallel. Here, again, it is assumed that s 
is a positive integer. 
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Those two formulas, (5) and (6), suggest the following process to generate the resistances 
Q,f/• (7 = 0,1,2,... , and i = - ( r - 1 , . . . , - 1 , 0 ,1 , . . . , r - l ) : 

(a) generate fi^y (/ = - ( r -1 ) , . . . , - 1 ) using (6) with Qj_li+l and s of each Clj_kJ+k for A: = 
2, ...,/•; 

( b ) n 7 f 0 = i; 

(c) gernerate fl^,. (/ = 1,2,3,..., r -1 ) using (5) with H^ ,-_i and s of each Q^,ti_k for A: = 2, 
...,r. 

Note that the ratios we are interested in correspond to Qj x (J = 0,1,2,3, . . .) . 
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It has been pointed out to me by a correspondent who wished to remain anonymous that the 
number 185878941, which was printed in the "loose ends" Section 7 on page 19 of the paper, has 
a factor 3. This, however, was a misprint for 285878941, which is (t\9+l'w)l2, and the same 
correspondent has checked that this is a prime by using Mathematica. The misprint was important 
because it appeared to undermine one of the interesting conjectures on that page (and incidentally 
calls into question my ability to "cast out 3s"!). The same correspondent pointed out that 
34227121 = 137x249833. 

I. J. Good 
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