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INTRODUCTION
In Liber Abaci (1202), Leonardo da Pisa posed and solved the following problem.

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many
pairs of rabbits can be produced from that pair in a year if it is supposed that every month
each pair begets a new pair which from the second month on becomes productive?

The sequence obtained to solve this problem—the celebrated Fibonacci sequence 1, 1, 2, 3, 5, 8,
13, 21, ...—appears in a large number of ratural phenomena (see [2], [6]) and has natural appli-
cations in computer science (see [1]). j

Here we reformulate the rabbit problem to recover two generalizations of the Fibonacci
sequence presented elsewhere (see [7], [8]). Then, using a fixed-point technique, we present an
elementary proof of the convergence of the sequences of ratios of two successive generalized
Fibonacci numbers. The limits of these sequences will be called here generalized golden num-
bers. Finally, we reconsider electrical schemes to generate these ratios (see also [3]).

1. THE RABBIT PROBLEM REVISITED

The modifications to the rabbit problem we would like to consider here are the possibility
that the mature rabbits produce more than one new pair of rabbits, and also the possibility of an
increase in the productivity.during the first few months. These two considerations lead to the
following reformulation of the rabbit problem.

A certain man put a pair of newborn male-female rabbits in a place surrounded on all sides by
a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed
that each month

(a) a i-month old pair of male-female rabbits gives birth to (i — 1)s pair(s) of male-female
rabbits until it is »-months old, and
(b) a more than »-month old pair of male-female rabbits continues to give birth to (» — 1)s
pairs of male-female rabbits?
In this formulation it is assumed that s is a positive integer.
Let u, be the total number of pairs of male-female rabbits at the n™ month, and v’ be the
number of i-month old pairs of male-female rabbits at the n™ month. Since v® is the number of
newborn pairs of male-female rabbits at the n™ month, we have

u, =u, | +v° and vi =10 . (1)
Then v,? =0 forn=-1,-2,-3,... (2a)
v =1 (2b)
r . M .
Vo= (i-Dsvi,+ Y. (r=1sv) forn=1,2,3,... . (2¢)
i=1 i=r+l
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Using (1), (2c) becomes

and it follows that

u,=0 forn=-1-2,-3, .. (3a)
uy =1 (3b)
unzun_1+sZu,,_, forn=1,2,3,.... (3¢)

i=2

Remark 1: For r = 2 we have the multi-nacci sequence of order s recently considered by Levine
[7]. One interesting property of these sequences is

2
Uy — Uy Uy = (__s)n.
Remark 2: For s = 1 we have the r-generalized Fibonacci sequence introduced by Miles [8] and
also studied by Flores [4] and Dubeau [3].

From these two remarks, we can call a r-generalized multi-nacci sequence of order s the
sequence of u,'s generated by (3).

2. CONVERGENCE OF RATIOS

In this section, we extend the method presented in [3] and [S] to obtain the limit of the
sequence of ratios £, =u, /u, | (n=1,2,3,...). Since the u,'s form an increasing sequence, we
have t,>1forn=1,2,3,.... From (3c) we have

,
u. .

t, =145y =% (n21),
i=2 ¥n-1

and using the definition of 7,, we obtain
z 1

i-1

ol L
j=1

)
1+s n=1 r—1

g ey >

r

1
1+8) — n=r,r+Lr+2, ...

i=2 th_j

J=1

The results of this section are then mainly based on the following two remarks.

Remark 3: t, depends only on the preceding r — 1 values #, 1,2, ,,...,%, (), and we can write
ty=F(pgs sty royy).

Remark 4: 1f 1, ,,...,1, ;) are all greater than or equal to >0, then 7, < f(b,...,b) and if
t jy are all less than or equal to 5> 0, then 7, > f (b, ..., b).

n=ls+» t"_(r__
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Let us use the function f(,...,-) to define another function F(:) as follows: F(x)=
f(x,..., x) or, explicitly,

|
F(x)=1+s}:—i—_T for x #0. 4
i=2 X%
The convergence result we look for will be obtained from the study of the function F'(:). The
next lemma summarizes the main properties of F'(-).

Lemmal: Let s>0,re{2,3,4,..} andx#0. Then

1+s(r-1) ifx=1
F X — r-1_

@ F) 1+——ST (G} ifx#1;
X7 (x=1

(b) F(-) is a strictly decreasing continuous convex function for x > 0;
(¢) lim F(x)=+ow and lim F(x)=1,
x—>0" X—>+o0
(d) the equation x = F'(x) has a unique solution 7 in the interval (0, + ) and 7 is the unique

positive root of the polynomial

r

p(x)=x"—-x"1- sy X7 g
i=2

Remarks 3 and 4 and the fact that #, 21 (k> 1) suggest the construction of a sequence
{b,},, such that

b =1 < ot fork >1,
t, < F(b)=b, fork>1+(r-1),
by=F(b,) < t fork>1+2(r-1),
t, < F(b)=b, fork=1+3(r-1),
by=F(b) < t, fork 21+4(r -1),
etc.

We have the following results about the sequence {b,},7;.
Lemma 2: Let {b,},] such that b, =1 and b,,, = F(b,) for £=1,2,3, ..., then
(a) the subsequence {b,, ,},] is strictly increasing and the subsequence {b,,}, is strictly
decreasing;
(b) foralliand j%1, we have by_; <b,;
(c) there exists a positive constant <1 such that 0<b,,,, —b,,,, <B*s(r—1) for £= 1, 2,
3, ..
(d) the sequence {b,},2; converges to the unique positive real root of the polynomial

r

px)=x"—x""-s> "

i=2
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Proof: (a) and (b) follow from 1=5 <b, = F(4), and if 0< o< f3, then 1< F(f) < F(c). To
prove (c) we use (4) and consider

1 1
0<bypsg =bypsy = F(byphy) — Fibyy) = SZ( J

i-1 i—1
b2l+1 bZZ

(bzz by411) izz i < (b2l~b2l+1)(§i_](§ ,l J

bybrens 55 120 bi,b5il, bypbyp  \iZobhy J\is0 Do
But
f# _ (byes1 —1) b,, and Z SR r;(@?il 1) ,
=0 D2, S bzz+1 b24+1 (bypn—1)
then

1
0<byppy —bypy <(byy — b212+1)(1 - ‘T_T]
by
Also, 1<b, <1+s(r—1), then 1<b, " <[1+s(r—1)]"", and it follows that

_ <1- !
bt [1+s(r—D]"

=f<«1

Hence, 0<b,,,, —byp,1 <(by,—b,,,1)B. Similarly, we can prove 0<b,, —b,,, < (b, —by,1)B,
and we can conclude that

0<bypy—bypy < B?(byy—byp ) <o < B (b, —by).

But b, -5, =s(r—1), and the result follows. Finally, from (c), the upperbounded increasing
subsequence {b,,,,},o and the lower bounded decreasing subsequence {b,,},2; both converge to

the value 7 defined in Lemma 1. O

Figure 1,on the following page, describes the construction and the convergence of the

sequence {b,} ;o0

We are now ready to prove the main results.

Theorem 1: Let s>0,re{2,3,4,5,..},u, as given by (3), and 7, =u,/u, ,forn>1. The

b 2 2

sequence { }' converges to the unique positive root 7 of the polynomial
p(x)=x"-x""- SZ X

Proof: From the way the sequences {, };-; and {5,},2; are generated, we have
t, 2b,,,, fork>1+24(r—-1) and 1, <b,, fork>1+2{+1)(r-1).

The result follows from Lemma 2. O
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b =1 1;3 b.,"‘LG .b,‘ 1;2 *
FIGURE 1. Graph of y = F(x)

Theorem 2: Let 1 be considered as a function of T and s. Then

(a) for any fixed s> 0, we have

. 1++4/1+4s
(i) 7=—-———forr=2,
2
(i) tincreases as r increases,
and

(i) lim =1+4/s;

r—>+o
(b) for any fixed 1, T~ Vs for large s.

Proof: For r=2, T is the unique positive root of p(x) = x> —x —s, which corresponds to
the given formula. Because F'(x) increases as r increases for fixed x and s, 7 increases as r
increases. Also

F(1+f)_1+f— — <1++s,

f)

then

/s
1+J_—(1+J_)r 0 <r<1+\/_

and lim, . 7 =1++/s. Also, from those formulas and inequalities, we obtain T~ /s when s is
large. O

The table below presents values of 7 for some » and 5. The last line of this table for 7 = +o

indicates lim,_,, 7 = 1++/s.
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When 7 =2 and s=1, T corresponds to the golden number. For s=1andr €{2,3,..}, T
has been called the r-generalized golden number. Hence, for s>0andr €{2,3,...}, we could
call 7 the r-generalized golden number of order s.

Table of 7 Values for Given r and s

1 2 3 4 5

1.6180340 | 2.0000000 2.3027756 | 2.5615528 | 2.7912878
1.8392868 | 2.2695308 2.5986745 2.8751298 | 3.1179423
1.9275620 | 2.3593041 2.6868102 29611061 | 3.2017404
1.9659482 | 2.3924637 | 2.7160633 | 2.9874051 | 32257176
1.9835828 | 24054051 2.7262912 | 29958519 | 32328999
1.9919642 24106054 | 27299574 | 2.9986240 | 32350925
1.9960312 | 24127271 27312869 | 29995422 | 32357669
19980295 | 24135994 | 27317715 | 2.9998475 | 32359750
1.9990186 | 24139595 27319486 | 2.9999492 | 32360392
19995104 | 2.4141084 2.7320134 29999831 | 32360591
1.9997555 | 2.4141700 | 2.7320371 2.9999944 | 32360652
1.9998778 | 24141955 | 27320458 | 2.9999981 | 32360671
1.9999389 | 2.4142061 2.7320490 | 2.99999%4 | 32360677
1.9999695 | 24142105 | 2.7320501 2.9999998 | 3.2360679
1.9999847 | 24142123 27320506 | 2.9999999 | 32360680
17 19999924 | 24142130 | 27320507 3.0000000 | 3.2360630
18 1.9999962 | 24142133 2.7320508 3.0000000 | 3.2360680
19 1.9999981 | 24142135 2.7320508 3.0000000 | 3.2360680
20 1.9999990 | 24142135 2.7320508 3.0000000 | 3.2360680
21 1.9999995 | 24142135 27320508 | 3.0000000 | 3.2360680
2 1.9999998 | 24142136 2.7320508 3.0000000 | 3.2360680
23 1.9999999 | 24142136 27320508 | 3.0000000 | 3.2360680
24 1.9999999 | 24142136 2.7320508 3.0000000 | 3.2360680
25 2.0000000 | 2.4142136 2.7320508 3.0000000 | 3.2360680
+ @ | 2 2.4142136 2.7320508 | 3. 32360680
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3. ELECTRICAL SCHEMES

The method presented in [3] to generate the sequences of ratios {u, /u,_,}+e using electrical
schemes can also be used here. Indeed, if

.

N uj+i—l+szuj+i-k r

Q. =-t= k=2 =Qj,i—1+sZQf,i—ka %)
k=2

Js1
u; u;

which correspond to 1+ s(r —1) resistances connected in series. Also

U.,. /P 1 1
g)' i — = o = r = r > (6)
s> U, L 1 1 1 + 1
j uj_1+sZuj_k T +szu T a s a
k=2 Upi Uy k=2 Ui T Uy J-Lil k=225 j—k,itk

which correspond to 1+ s(r — 1) resistances connected in parallel. Here, again, it is assumed that s
is a positive integer.
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Those two formulas, (5) and (6), suggest the following process to generate the resistances
Q,, (=0,12,..,and i=—(r-1,..,-10, L..,r=1:

(a) generate Q; (i=—(r-1),...,—1) using (6) with Q,_, ;,, and s of each Q,_, ,,, for k=
2, ..,1;

(b) Qj,O =1

(c) gernerate Q;; (1=1,2,3,...,r-1) using (5) with Q; ,_; and s of each Q, ;_, for k=2,
r.

ceey

Note that the ratios we are interested in correspond to Q; | (j=0,1,2,3,...).
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The Fibonacci Quarterly 31.1 (1993):7-20

It has been pointed out to me by a correspondent who wished to remain anonymous that the
number 185878941, which was printed in the "loose ends" Section 7 on page 19 of the paper, has
a factor 3. This, however, was a misprint for 285878941, which is (¢2, +£]2)/2, and the same
correspondent has checked that this is a prime by using Mathematica. The misprint was important
because it appeared to undermine one of the interesting conjectures on that page (and incidentally
calls into question my ability to "cast out 3s"!). The same correspondent pointed out that
34227121=137 x 249833,

1. J. Good
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