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1. INTRODUCTION 

Let R = {Rn}™ be a second-order recurrent sequence (generalized Fibonacci sequence) of 
integers defined by 

Rn = ARn_l-BRn_2 (forn>l), 

where the initial terms are R$ = 0, Rx = 1, and A and B are fixed nonzero integers. Let a and j8 be 
the roots of the characteristic polynomial x2 - Ax + B. We will assume that the discriminant 
D = A2 -AB > 0 and D is not a perfect square. From this, it follows that the sequence R is not 
degenerate, i.e., a I j3 is not a root of unity. In this case, a and j3 are two irrational real numbers 
and |a |^ | j3| , so we can suppose that |a|>|]3|. Also, 0<j3iffO<v4-i?. And 0< j3<l holds iff 
0<B(A-B-l). 

It is well known that the terms of R can be given by 

K ~^T ^7F~ (1) 

Furthermore 

lim ^ - = a (2) 
n->co Rn 

(see, e.g., [3] or [6]). 
Limit (2) implies that a can be approximated by the rational numbers Rn+1/Rn. The second 

author, P. Kiss [5], proved that when B = 1 this approximation is good in the sense that 

\ a - ^ 1 
c-% 

holds for some c and infinitely many n. 
It was also proved in [5] that this inequality holds for infinitely many n only when |2?]="1. 
In this paper the points Pn = (Rrl9-Rn+l) will be considered from a geometric point of view, as 

points on the Euclidean plane. G. E. Bergum [1] and A. F. Horadam [2] showed that the points 
Pn = (x, y) lie on the conic section Bx2 - Axy + y2 +eBn = 0, where e = ARi)Rl-BR^ -R2, and 
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the initial terms RQ andRl are not necessarily 0 and 1. In their treatment of this equation, they 
showed that in the case \B\= 1, when the conic is a hyperbola, the asymptotes of the hyperbola are 
the lines y - ax andj = px. This corresponds to limit (2). For the Fibonacci sequence, when 
yl = 1 andi? = - l , C. Kimberling [4] characterized those conies satisfied by infinitely many 
Fibonacci lattice points (x, y) = (Fm9 F„). 

In this paper we again investigate the geometric properties of Pn in both the two- and three-
dimensional cases. 

2. THE TWO-DIMENSIONAL CASE 
Let us consider the points Pn = (Rn, Z^,+1), n = 0, 1, 2, ..., on the plane whose coordinates are 

consecutive elements of the sequence R. Then (2) shows that the slope of the vector OPn tends to 
a. But it is not obvious that the points Pn approach the line y - ax, as n —» oo. The following 
theorem shows that this is the case, however. 

Theorem 1: Let dn denote the distance from the point Pn = (Rn, i^+1) to the line y-ax. Then 
lim.n_>00 dn - 0 if and only if |j31 < 1. 

Proof: The distance dx from a point (x0,y0) to the line y = ax is given by 

ab.J'o 
ax0-y0 

Jo1 + 1 
(3) 

so, using (1), we have 

d = 
aRn~Rn+l 

Va2+1 
= 

a"+1-/?"a a"+1-j3"+1 

a-/5 a - ^ 
Va2+1 

_ l/JP 
Va2+1 

(4) 

from which the theorem follows. 

Remark: | J 3 |<1 holds when |5 + 1 |< |4 

This theorem implies that the points Pn converge to the line y - ax if | j3| < 1, but not neces-
sarily that these lattice points Pn are the nearest (in the sense of Theorem 2) lattice points to 
y = ax in all cases. For, let dx denote the distance between the lattice point (x, y) and the line 
y - ax, and let dn be the distance mentioned in the theorem. We prove 

Theorem 2: For integers u, v, denote by duv the distance from the lattice point (u, v) to the line 
y-ax and let dn be the distance defined in Theorem 1. Then when \B\ = 1, there is no lattice 
point (x,y) such that dx <dn and |x|<|i?J. Furthermore, for sufficiently large n, this holds if 
and only if |-B|='l. 

Proof: First suppose | 5 | = 1. In this case, obviously, |j3|<l and a is irrational. Assume 
that for some n there is a lattice point (x, y) such that dx y <dn and |x| < \R7\. Then, by (3) and 
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(4), \ooc-y\<\p\n follows. From this, using (1) and the fact that |aj3| = [i?|=l, we obtain the 
inequalities 

a~A lftl"_ ,1 = | l - ( / ? / « r U l - ( j 3 / a ) " | 
Ixl |a|"l*l ^ ' D „ , / H -2 •JD-X-4D-\R„X\ 

In [5] it was proved that if \B\ = 1, and/?, # are integers such that (p, q) - 1 and 

(5) 

a 43-q2 

then /? / q has the form pi q- Rj+i I Rj for some i. The proof also shows that (5) holds only if 
x = Rj 2ind y - Ri+1 for some i, if/? is large enough. So x = i^ is a term of the sequence R. The 
sequence R is a nondegenerate one with D>0 and |-B| = 1. So it can easily be seen that |i^|, 
\Rt+i\, ..., is an increasing sequence if Hs sufficiently large. Furthermore, by (4), dk >dj \ik <j. 
Thus, i < n and dt > dn follows, which contradicts d{ -dx y<dn. So the first part of the theorem 
is proved. 

To complete the proof, we have to prove that if \B\ > 1, then there are infinitely many pairs of 
lattice points (x, y) such that */ < d„ and |x| < |i?J for any sufficiently large n. 

Suppose \B\ > 1. If f/3| < 1, then, by (4), dn -> oo as n -» oo? so there are lattice points (x, y) 
such that dXty <dn and |x|<|i?J for any sufficiently large n. 

If |p | = 1, then <i„ is a constant and there are infinitely many points (x, y) such that dx y < dn 

and |x| < \Rr\ for some n, since |i^|-> °o as n -> oo. 
If |/31 < 1, then by (4) and |5 | > 1, we have 

a-
R 71+1 

K 
\P\" JB\"\l-(p/ay\^ Q 

(6) 

for any fixed Q > 0 if n is sufficiently large. In this case, the roots a, j3 are irrational numbers 
since, if the roots of the polynomial x2 -Ax + B are rational, then they are integers; so 0 < | J31 < 1 
would be impossible. It is known that if rk =ylx is a convergent of the continued fraction 
expansion of a , then 

a - y 
2\x\ 2 • (7) 

Lety, and hence x, be large enough and let the index n be defined by |i?„_1| < |x| < \Rn\. From (3), 
(4), (6), and (7), we obtain the inequalities 

d„> Q 

\K\Ju2 + i 
and dr „ < 1 

2|x|Vo^ + 1 
But, by (1), 
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Q Q 1 1 
1^,1" I J ^ a K l - C / J / a n / O - O S / a r 1 ) > 2 | / U " 2\x\ 

and so dx y < dn with |x| < | i^ | , which completes the proof of the theorem. 

Lastly, we give equations that are satisfied by the lattice points (Rrl, R„+i). 
Theorem 3: All lattice points (x, y) = ( i^ , i?w+1) satisfy one of the equations 

(i) y = ax + c(x)'\xf or (ii) y - ax - c(x)-\xf, 

where 8 = log| j3 |/log|a| and c(x) is a function such that l im^^ c(x) = ^ . 

Remark: This shows that the sequence of lattice points ( i^, i?„+1) tends to the line y = ax only if 
8 <0, i.e., iff |/31 <1, as proved in Theorem 1. 

Proof: By (1), we have 

an-pn apn-pn+l
 n an 

^a^+-V/H°^+ / r (8) 
and 

l3,|=JjL(l-(0/a)"). (9) 

From (9), we have n = 'og | f i"l |0 'l^"£" where e„ = log(l - (/3 / a)") and e„ -> 0 as n -> oo since log|a| 

| j3/a |<l. This implies that 

r = ± (lofe|/31-log|31 + log | /3 | - log^_£„-log[^ | | = f^K 
y\ log\a\ log|«| log|a| J ' "' K J 

where 5 = log|/?|/log|a| and 

log|j3| £„-log|/3[ 
log| a I logv£>-log|a| 

(11) 

since en -> 0 as n -> oo. 
From (8), (10), and (11), the theorem follows. 

Remark: The lattice points (i^,i?„+1) safisfy $ for every « if /3 > 0. If /3 < 0, then the lattice 
points satisfy alternately (i) and (ii). 

3. THE THREE-DIMENSIONAL CASE 

Now we consider the three-dimensional vectors ( i^, i^+1, i^+2). Since by (1), 

—— — - a > a , as n -» oo, 
^ a-jB 1-05/a)" 
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i?„+1 /R„ -> a, as n -> oo, by (2), and 

That is, the direction of the vectors (i?„, i?„+1, i?„+2) tends to the direction of the vector (1, a, a 2 ) . 
However, the sequence of the lattice points Pn = (Rn, i?„+1, i^+2) does not always tend to the line 
passing through the origin and parallel to the vector (l ,a, a 2 ) . We will prove the analog of 
Theorem 1. 

Theorem 4: let L be a line defined by x = t, y - at, z - a2t, t eU. Furthermore, let dn be the dis-
tance from the point (i?„, i^+1, i^+2), n = 0, 1, 2, ..., to the lineX. Then l im^^ dn - 0 if and only 
ifi/?i<i. 

Proof: It is not difficult to show that the distance from the point (x0, y0, z0) to the line L is 

(x0cc2 -zoy +(x0a-y0y +(y0a2 -zQay (12) 

This notation is necessary for Theorem 5. 
By (12) and (1), we have 

d = (j3"+2 -a2li")2 +(j3"+1 -aj3")2 +(«j3"+2 -«2j3"+1)2 

( a - j 3 ) 2 ( l + a " + a 4 ) 

V 1 + o r + a V 1 + o r + a 

where we have used a + j5 = A and a/3 = B since a and J8 are the zeros of the polynomial 
x2 - Ax + B. From this, the theorem follows. 

Theorem 2 can also be generalized to the three-dimensional case, i.e., to state that the lattice 
points (i?„, Rn+l, Rn+2) are the nearest lattice points to the line L iff \B\ - 1. 

Theorem 5: Let L be the line defined in Theorem 4. Let dn and dx^z be the distances defined in 
Theorem 4 and its proof. Then, for sufficiently large n, there is no lattice point (x, y, z) such that 
dXtytZ <dn and |x|<|i?„| if and only if |2?| = 1. 

Proof: Suppose \B\ = 1. Then, since 0 < D = A2 -45, a is irrational because ^42 ±4 is not a 
perfect square. 

Let (x, y, z) be a lattice point such that 

dx,y,z<dn (14) 
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for some n and |JCJ < |i?J. By Theorem 4 dx y z < e follows for any e > 0 if n is sufficiently large. 
But then, by (12), \xa2 -z\,\xa-y\, and \ya2 -za\ are sufficiently small. If j x a - j l is a small 
number then, since a2 - Aa -B, \xa2 -z\ = \Axcc - (z + Bx)\ can be small only if z + Bx = Ay, 
i.e., only if z = Ay - Bx. In this case 

\xa2 -z\ = A-\xa-y\ and \ya2 -za\ = \(z-Ay)a+By\ = \B\-\xa-y\ 

are also small. Thus, from (12), (13), and (14), 

x» y>z 

1 + a +oc 

and so, using |x| <| i?J and \ap\ = \B\ - 1, we get 

A2+B2+l , , [om A2+B2 + l -2 T.\xa-y\<\p\n -2 

a 
y <\K = i l-(p/a)n l-(p/a)n 

x\ \a\n\x\ | ^ | . V D - | X | VD-|xf 

From this, as above, we obtain x - ^,9 y = i^+1, and z = 4y - Bx - i?,+2 for some natural number 
/, if n is sufficiently large. Thus, dx y z - dt. But by (13), dk < dn only if k > n, so / > n and \x\= 
|^|>|i?„|, which contradicts the assumption |x|<|i^|, since the sequence |i?J is ultimately 
increasing. 

To complete the proof, we have to show that in the case |j3|<l there are infinitely many 
lattice points (x, y, z) for which dxy2 < dn and |x|<|i^| for some n. Such points trivially exist by 
(13), when |j31 > 1 or when |/J | = 1, so we can suppose that |j81 < 1. 

Suppose \B\>\ and |j3| < 1. In this case a is irrational. Let r - y I x be a convergent of the 
continued fraction expansion of a and let z be an integer defined by z - Ay -Bx. Then, by the 
elementary properties of continued fraction expansions of irrational numbers, using also the fact 
that a2 = Aa - B, we have 

2 
| x a - j | = j d !a-^l 

2|*T 

\xa2 - z\ -1 Axa - (z + Bx)\ = | Axa - Ay\=| Ax\ • a- y .Mil 
2|JC|' 

and 
| ya2 - za\ = \{z - Ay)a+By\ = \Bx\ u-y-\ 

2\x\ 

This, together with (12), implies the inequality 
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1 A2+B2+l c 
d„ „ , <- forc = J - T 

v Vl+a2+cc4
; 

(15) x'y'z 2\x\ Vl+a2+a4 2|x| 

Let n be a natural number defined by \R^^ < \x\ < \R„\, For this n, by (13) and (15), we have 

Vl+or +a \a\ 
_\B\" c_ 1 c(l-(B/a)"-l)\B\" >_c_>d 

loci"'1 \oc\ 1^,1 \a\.jD 2\x\ w 

if x and hence n is large enough, since |J?|>1. This shows that, for any lattice point (x,y,z) 

defined as above, there is an n such that dx^z <dn and |x| < |i?J. This completes the proof. 

Lastly we prove the three-dimensional analog of Theorem 3. 

Theorem 6: The coordinates of the lattice points (x, y, z) = (Rn:> i?„+1, i^+2) satisfy the system of 
equations 

x = t 
y-a 
z = a2t + A'c(t)\t\° or z = oczt-A-c(t)\t\° 
y = oct + c(t)\tf or y = at - c(t)\tf 

where 5 = log| J3 |/log|a| and c(t) is a real-valued function for which l im^^ c(t) = -JD . 

Proof: By (1), it can easily be shown that 

Rn+2=a2RnH^mn-oc2Rn^A^\ (16) 

From (8), (10), (11), and (16), the theorem follows. 
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