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PROBLEMS PROPOSED IN THIS ISSUE 

H-481 Proposed by Richard Andre- Jeannin, Longwy, France 

Let <j)(x) be the function defined by 

where r>2 is a natural integer. Show that (j)(x) is an irrational number, if x is a nonzero rational 
number. 

H-482 Proposed by Larry Taylor, Rego Park, NY 
Let7, k9 m, and n be integers. Let An(m) - Bn(m-l) + 4An(m-1) and Bn(m) - ABn(m-1) + 

5An(m-1) with initial values An(0) = Fn, Bn(0) = L„. 

(A) Generalize the numbers (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) to form an eleven-term arithmetic 
progression of integral multiples of An+k{m + j) and/or Bn+k(m + j) with common difference 

(B) Generalize the numbers ( 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 ) 1 0 form a ten-term arithmetic pro-
gression of integral multiples of An+k(m + j) and/or Bn+k(m + j) with common difference An(m). 

(C) Generalize the numbers (1, 1, 1, 1, 1, 1, 1, l ) to form an eight-term arithmetic progres-
sion of integral multiples of An+k(m + j) and/ or Bn+k(m+j) with common difference An(m). 

Hint: 4f(l) = - l l ( - i r ^ l l ( - l ) . 

Reference: L.Taylor. Problem H-422. The Fibonacci Quarterly 283 (1990):285-87'. 

SOLUTIONS 

A... Periodic 
H-464 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 30, no. 1, February 1992) 

Show that I [ j k - 2 t = ^ , where AJ=(-lfJ+^ -((-1)^1 H-lf^)h. [ ] 

denotes the greatest integer function. 
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Solution by C. Georghiou, University ofPatras, Patras, Greece 
First, note that Aj is periodic with period 10 and with AQ = A5 = 0, Ax - A2 = As = A9 = 1, 

and A3 - A4 = A6 = A7 = -I. Its (ordinary) generating function is 

g(z) = (z + z 2 - z 3 - z 4 - z 6 - z 7 + z 8 + z 9 ) / ( l - z 1 0 ) 
= (z + z 2 - z 3 - z 4 ) / ( l + z 5 ) -z ( l - z ) ( l + z ) / ( l - z + z 2 - z 3 + z 4 ) 

z 2 - z + l - z *+z2 

Second, let 

„=0VAr=0^ ' J «,Ar=(A ' «=0 

w/2 + l/2,w/2 + l „ 2 

« + l 

where 2FX[ ] is the Gauss hypergeometric series (see solution of H-444). But 

iFi 
a, a + 1/2. 

la 
= 22a-1(l-z)-1/2[l + (l-z)1 / 2] , 

(see M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions [New York: Dover, 
1965] Entry 15.1.14, p. 556), and therefore, by setting d = (l-4x2)1 / 2 we obtain 

™-%<&um Now 

and 

l + d 2x 
2x l + d 

= d/x l + d 2x 
- + =l/x 

1 + dY f 2x 
2x ) + l + d 

2x l + d 

= l / x 2 - 2 . 

Therefore 

/oo= l-x-x 
which is the generating function of Fn, and the assertion follows readily. Note that the problem is 
the same as H-444. 
Also solved by P. Bruckman and the proposer. 

BGood 

H-465 Proposed by Richard Andre-Jeannin, Tunisia 
(Vol 30, no. 1, February 1992) 

Let/? be a prime number, and let rx,r2,...,rs be natural integers such that $>2,rl<p, and 
Hk=[ krk = p. Show that the number 
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B, 1 ( r i +r2 + - + r , ) ! 

is an integer. 

Solution by Paul S. Bruckman, Edmonds, WA 

Let Bs = Br^ for brevity. Let N denote the set of positive integers. We may express Bs 

as follows: 
<r,+Y...»,-D. 

From the condition ££=1 Ar̂  = /?, with l<rk, k = 1,2,..., s, it follows that r̂  </?. Then, we see 
from (1) that Bs = AIB, say, where gcd(i?, p) = 1. 

Also, there are s distinct ways to express Bs, as follows: 

B,=Uk/rk,k = \,2,...,s, (2) 

where Uk is the multinomial coefficient defined as follows: 

Uk=h+'2 + -+r.-W. (3) 
r1\r2\...(rk-l)\:.r,l 

As we know, the Uk's are positive integers. Therefore, rkBs GN. Therefore, BsY,sk=ikrk = 
pBs GN. This implies that either rkBs GN, or else Bs-Alp for some integer A; however, as 
we have seen, this latter contingency is impossible, so we are done. 

Also solved (partially) by the proposer. 

A Unique Answer 

H-466 Proposed by Paul S. Bruckman, Edmonds, WA 
(Vol 30, no. 2, May 1992) 

Let p be a prime of the form ax2 + by2, where a and b are relatively prime natural numbers 
neither of which is divisible by/?; x andj are integers. Prove that x and y are uniquely determined, 
except for trivial variations of sign. 

Solution by Don Redmond, Southern Illinois University, Carbondale, IL 

Suppose that there are two representations, say, p-ax2 + by2 mdp = ar2 + bs2, where we 
may assume that x, y, r, and s are natural numbers. Then (x, y) - (r, s) = 1. If we eliminate b 
between the two representations, we have p(y -s ) = a(r y -s x ). 

Since p\a, we see that p\(r2y2 -s2x2), and so, for some choice of sign, we have 

ry = ±sx (mod p). (1) 

Also, the two representations give 

p2 = (ax2 + by2 )(ar2 +bs2) = (axr ± bys)2 + ab(ry + sx)2. (2) 
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If ry - sx, then (x, y) = 1 = (r, s) implies that r = x and s = y. 
If ry ^ sx, then (1) and (2) imply that \ry ±sx\= p, a = b - 1, and oxr +&JAS* = 0. This implies, 

since x2 +y2 = r2 +$2 = p, that x = s andj = r. 
Thus/? has essentially only one representation. • 

Also solved by R Isreal and the proposer. 

Many Congruences 

H-467 Proposed by Larry Taylor9 Rego Park, NY 
(Vol 30, no. 2, May 1992) 

Let (an,hn, cn) be a primitive Pythagorean triple for n = 1, 2, 3, 4, where an,bn, cn are posi-
tive integers and bn is even. Let p = \ (mod 8) be prime; r2+$2z=t2 (mod p), where the 
Legendre symbol f^±H!l\ = 1. 

Solve the following twelve simultaneous congruences: 

K,*i ,<i)s(r , .s ,f) , 
(a2,b2c2) = (r,s,-tl 
(a3,b3,c3) = (s,rJX 
(a4,b4,c4) = (s, r, -1) (modp). 

For example, if (r, s9 i) = (3,4,5) (mod 17), 

(a1,ft1,c1) = (3,4,5), 
(«2,62,^2) = (105,208,233), 
(03,6,,^) = (667,156,685), 
(a4,ft4,c4) = (21,20,29). 

Solution by Paul S. Bruckman, Edmonds, WA 

All congruences are assumed to be (mod/?), unless otherwise specified. Some definitions and 
notational remarks are in order. A pair of integers (w, v) is said to be a generator of the primitive 
Pythagorean triple (p.P.t.) (a, b, c) if the following conditions hold: 

u>v>0; u£v(mod2); gcd(w,v) = 1. (1) 

In that event, we have 
a = u2-v2; b = 2uv; c = u2+v2. (2) 

We also write (u, v) GG(G, b, c), meaning that (u, v) satisfies (1), and (2) holds. 

The hypothesis implies that r and t have the same parity, since 1 i£±£l I = 1 is a stronger state-

ment than [2"'(f+r)j = 1; also, it is implied that s is even. Since [\s] = [\(t + r)]^\(t -r)\, it fol-

lows that *(r r) 1 = 1. Therefore, there exist integers w and V such that 

( f | , ) 2 s l ( / + r ) j ( v , ) 2 s ± ( , _ r ) . ( 3 ) 

By adding or subtracting the congruences in (3), we obtain 

t = (w)2 + (v)2, r ss (w)2 - (V)2. (4) 
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Also, 4(ufv)2 = t2-r2 = s2; thus, by an appropriate choice of signs for w and/or v , we have 

s = 2ufvf. (5) 
There is nothing in the hypotheses to suggest that (r,s,t) is a p.P.t, even though (r,s,t) = 
(3,4,5) in the example, which is indeed a p.P.t.; we could just as well have been given (r, s, t) = 
(37,-30, 73), which also satisfies the hypotheses for/? = 17, yet 372 + 302 * 732. Nor is it likely 
that our initial choice of w and v satisfying (3) and (5) satisfy (1). However, we see that by add-
ing suitable multiples of/? to w and /or v , we do obtain a new pair (uu vx) that satisfies (1). It is 
then true that (uh vx) e G(ah 1\, q), where (au \ , q) = (r, s, t). To use the data of the example, 
we may take (uh v{) = (2, 1) as the solution of (3) and (5), with/? =17, (r, s, t) = (3,4,5), also 
satisfying (1), since (2,1) e G(3,4,5). 

Next, we observe that since p = l (mod 8), there exist solutions / and/of the following 
congruences: 

i2 = -\ / - 2 - i . (6) 

In fact, there are two solutions for each congruence in (6). We will need to choose the signs of/ 
and7 such that appropriate generators (un, v„) may be found for (an, bn7 cn\ n - 2, 3,4. Thus, for 
n = 2, and for an appropriate solution / of (6), we claim that (u2, v2) is found from the following: 

u2=ivh v2 = -iul. (7) 

Proof: Given (7), then u2-v2 = i2 (v2 - u\) = u2 - v\ = r; 2u2v2 = -2i2ulvl = 2ulvl = s; and 
u2 +v2 =i2(u2 +v2) = -u2 -v2 =-t. Also, we determine w2andv2 that satisfy (1). It then 
follows that (u2, v2) GG(a2,b2,c2), with (a2,b2,c2) = (r,s,-t). In this example, we take 
j = -4, w2=-4-l , v2=4-2. We find that we may take (u2, v2) = (13, 8), and that (13, 8) e 
G(105,208,233); also, (105,208,233) = (3,4, - 5). 

Next, we claim that, by an appropriate choice of/, we have: 

«3 s 7 (" i+Vi) , ^3=J(U\-Vi)- (8) 

Proof: u\ - v2 = y'2 • 4I/Jvx = 2w1v1 = s; 2u3v3 = 2j2 (u2 - v2 ) = u2 - v2 = r; and u\ + v2 = 
2j2(u2 +Vi) = u2 +v2 =t. In the example, 7 = 3; then, w3 = 3-3,v3 = 3-1. We may take 
(u3, v3) = (26, 3), and we find that this pair generates (a3,b3, c3) = (667,156, 685) = (4, 3,5). 

Finally, we claim that, for appropriate / andy, we have 

w4 = y(^i-viX v4 = -v(ui+vi); (9) 
equivalently, 

u4 = -iv3, v4=iu3. (10) 

Proof: u\-v\= i2(v2 -u3) = u2-v2 =s; 2u4v4 = -2i2u3v3 = 2u3v3 = r; and u2
4+vl = 

-i2(v2 + u2) = -u\ - v2 = -t. In this example, take / = 4. Then u4 = -4• 3 = 5 and v4 = 4• 26 = 2. 
We find that (5, 2) eG(21, 20,29), where (21,20,29) = (4, 3,-5). 
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To summarize, (un, vn) eG(an,bn,cn), n = 1,2,3,4, where 

w1
2=2"1(r + r), v1

2=2"1(7-r); w2=/v1? v2=-/w1; 
% s M + vi), v3 s y(«i - vO; w4 » -iv3, v4 = m3; 

(wi,Vj) and the values of/ and j are obtained as appropriately chosen solutions of (3), (5), and 
(6), so as to satisfy (1) for each (un, vn). 

Also solved by the proposer. 

A Very Odd Problem 

H-468 Proposed by Lawrence Somer, Washington, D. C. 
(Vol 30, no. 2, May 1992) 

Let {v„}0<„<00 be a Lucas sequence of the second kind satisfying the recursion relation 
vn+2 = avn+l+bvn, where a and b are positive odd integers and v0 =2,vx= a. Show that v2n has 
an odd prime divisor p = 3 (mod 4) for n > 1. 

Solution by Russell Jay Hendel, Patchogue, NY 

If a is odd, then a2 = 1 (mod 4) and 2a = 2 (mod 4). It follows that the congruence classes 
modulo 4 of the sequence v0, v1? v2,..., are 2, a, 3, a(3 + 6), 3,3a£, 2, a,... .Since this sequence has 
period 6, v6w±2 = 3 (mod 4), implying that at least one of the prime factors of v6n±2 is congruent to 
3 modulo 4. 

v2n is either of the form v6n or v6n±2. Therefore, we have to deal with the case v2n. First we 
note that vn\vnk for any odd integer k. This follows because the Binet form of vn is yn +8n with 
y = (a + J {a2 + 4b}) I2,y +*8 -a.y8- b. Therefore, if k is an odd integer, the formula xk +yk -
(x + y){xk-l+yk-l-xy{xk-2+yk-2) + (xy)2(xk^ implies, with x = y\ 
y = S\ that vn\v„k. 

Proceeding as in [1], for each integer n, 6n - 2m(6nf + 3), for some integers m and «'. Since 
2m = ±2 (mod 6), there is a prime /? = 3 (mod 4) such that p divides v2Wi. Since 6n 12m is odd, p 
also divides v2n and the proof is complete. 

Reference: 
1. Sahib Singh. "Thoro's Conjecture and Allied Divisibility Property of Lucas Numbers." The 

Fibonacci Quarterly 18.2 (1980): 135. 

Also solved by P. Bruckman, K Andre-Jeannin, and the proposer. 
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