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1. INTRODUCTION 

It is well known that Euclid's algorithm for computing the greatest common divisor (gcd) of 
two integer numbers is more than two thousand years old and, as it turns out, it is the oldest 
known algorithm. Interest in computing a gcd of two polynomials first appeared only in the 
sixteenth century and the problem was solved by Simon Stevin [13] simply by applying Euclid's 
algorithm (for integers) to polynomials with integer coefficients. However, from the computa-
tional point of view, Euclid's algorithm applied to polynomials with integer coefficients is very 
inefficient because of the growth of coefficients that takes place and the eventual slowdown of 
computations. This growth of coefficients is due to the fact that the ring Z[x] is not a Euclidean 
domain, and hence, divisions (as we know them) cannot always be performed. 

For example, take the two polynomials px(x) = x3 -7x4-7 andp2(x) = 3x2 - 7 which have 
very small coefficients. Observe that, over the integers, we cannot divide px(x) hyp2(x) (since 3 
does not divide 1) and, hence, we have to introduce the concept of pseudo-division, which always 
yields a pseudo-quotient and pseudo-remainder. According to this process, we have to premulti-
ply Pi(x) by the leading coefficient of p2(x) raised to the power 2 [that is, we premultiply 
Pi(x) by 9 = 32] and then apply our usual polynomial division algorithm. [Below we denote the 
leading coefficient (1c) of a polynomial p(x) by lc(p(x)) and its degree by deg(j?(x)).] 

In the general case where deg(pl(x)) = n, and deg(p2(x)) ~m, we premultiply px{x) by 
lc(p2(x))n~m+l. In this was we know for sure that all the polynomial divisions involved in the 
process of computing a greatest common divisor of px{x) and p2(x) will be carried out in Z[x]. 
That is, in general, we start with 

HP2 (x)Y~m+l Pi (*) = qx (x)p2 (x) + p3 (x), deg(ft (x)) < deg(p2 (x)) (1) 

and applying the same process p2(x) and p3(x), and then to p3(x) and /?4(x), etc. (Euclid's 
algorithm), we obtain a polynomial remainder sequence (prs) 

Pi (*), P2 (xl P3 (*)> -,Ph (xl Ph+i O) = °> 

where ph(x) ^ 0 is a greatest common divisor of px(x) and p2(x), denoted by gcd(/?1(x), p2(x)). 
The reader should compute the prs of the above example and verify that the coefficients grow 
rather rapidly (even when we start with such very small coefficients!!) Answer: qx{x)-3x, 
p3(x) = -42x + 63, q2(x) = -126x-189,p4(x) = -441, q3(x) = 18522x-27783, and p5(x) = 0. 

Note that we are dealing with exact integer computations and, for reasons that cannot be 
discussed here, the length of the integers involved is taken into consideration when we analyze the 
complexity of an algorithm. (Generally speaking, the complexity of an algorithm refers to the 
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according to this number that the various algorithms are being compared for efficiency.) For an 
introduction to Computer Algebra, the area that deals with exact integer computations, see [3]. 

Therefore, the problem with the above approach is that the coefficients of the polynomials in 
the prs grow exponentially and, hence, slow down the computations. We wish to control this 
coefficient growth without having to compute gcd's of coefficients (because that in itself can be 
time consuming). In what follows, we use the following conventions: if nt = deg(j?z(x)) and we 
have rij -ni+l - 1, for all /, the prs is called complete, otherwise, it is called incomplete; moreover, 
a polynomial p(x) is called primitive if its coefficients are relatively prime. 

As we will see immediately below, using pseudo-divisions, the problem of controlling the 
coefficient growth was originally solved (at least partially) by Sylvester in his 1853 paper and fully 
by Habicht in 1948. Equivalently, as we will see in §2, the problem can be solved by triangulariz-
ing the matrix corresponding to what we call Sylvester's form of the resultant (and which form is 
different from the one people are used to), thus avoiding explicit polynomial pseudo-divisions. It 
turns out that Sylvester's paper of 1853 is the basis for both classical methods to restrict the 
coefficient growth (see Figure 1 below) and, thus, we have one more case indicating the 
importance of mathematics of the last century, and its connection with computational mathematics 
as done today. 

<- Sylvester1 s paper of 1853 -> 

i i 
The pseudo-divisions The matrix-triangularization 
subresultant prs method subresultant prs method developed 
initiated by Sylvester in 1853 and by the author in 1986. 
completed by Habicht in 1948. 

FIGURE 1. 

Overview of the historical development of the two classical subresultant prs methods for restricting the 
growth of coefficients. The method developed by Sylvester should be used only when the prs is com-
plete, whereas the one by Habicht should be used when the prs is incomplete, something which we do 
not know apriori. (Actually, Habicht's method also can be used when the prs is complete, at additional 
computational cost.) The matrix-triangularization method can be identically used for both kinds of 
prs's. 

To see how Sylvester's results can be applied in the pseudo-divisions method, observe that 
(1) can also be written, for any two successive polynomials pt(x) and/?/+1(x) of the prs, as 

l c ( f t + 1 ( x ) ) * - ^ ' > , ( x ) = ft(xW^ (2) 

i = 1, 2, ..., h - 1, where j3/ is the integer which we want to divide out of the coefficients of 
Pi+i(x)- That is, if a method for choosing j37 is given, the above equation provides an algorithm 
for constructing a prs. The obvious choice j8/ = 1, for all i, is called the Euclidean prs; it was 
described above and, as we saw, it leads to exponential growth of coefficients. Next, choosing j3y 

to be the greatest common divisor of the coefficients pi+2(x) results in the primitive prs, and it is 
the best that can be done to control the coefficient growth. (Notice that here we are dividing 
Pi+i(x) by ^ e greatest common divisor of its coefficients before we use it again.) However, as 
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we indicated above, computing the gcd of the coefficients for each member of the prs (after the 
first two, of course) is an expensive operation and should be avoided. 

So far, in order both to control the coefficient growth and to avoid the coefficient gcd comp-
utations, either the reduced or the (improved) subresultantprs have been used. In the reduced 
prs (developed by Sylvester) we choose 

0, = 1 and ft =lc(Pi(x)y->-"<+\ i = 2,3,...,h-l, (3) 

whereas, in the subresultant prs (developed by Habicht) we have 

ft = (-i)".-"2+1 and ft = {-\)">-"M+l\c{pi(x))H?~nM, i = 2,3,..., A-1, (4) 
where 

tf2=lc(ft(*))">-"' and if,=lc(A(x))"'--'"^L-/"-'-"'\ i = 3,4,... ,A-l. 

That is, in both cases above, we divide pj+2(x) by the corresponding j3y before we use it again. 
Consider again the above-stated example where we are dealing with a complete prs and, 

hence, (3) and (4) yield exactly the same results [note that, using (4), we have to perform some 
extra computations]; the reader should verify that, in both cases, we obtain /3X = 1 and, hence, 
p3(x) = -42x + 63 whereas /32 = 9 and, hence, p4(x) = -49 (= 441/9) instead of p4(x) - -441 
obtained before. Note that, with this approach, we were able to reduce the coefficients of p4(x), 
but there is no way to reduce the coefficients of p3(x)! 

The reduced prs algorithm is recommended if the prs is complete, whereas if the prs is incom-
plete the subresultant prs algorithm is to be preferred. The proofs that the j3/s shown in (3) and 
(4) exactly divide pi+2(x) were very complicated [7] and have up to now obscured simple divisi-
bility properties [13] (see also [5] and [6]). For a simple proof of the validity of the reduced prs, 
see [1]; analogous proof for the subresultant prs can be found in [10] and [3]. A very simple 
proof of Habicht's theorem can be found in the recent work of Gonzalez et al. [9]. For some 
interesting comments regarding priority rights for the development of these prs algorithms see 
[11] and Historical Notes to Chapter 5 in [3, p. 282]. 

In contrast to the above prs algorithms, the matrix-triangularization subresultant prs method 
avoids explicit polynomial divisions. In what follows, we present this method and show how to 
solve the example mentioned above. 

2. SYLVESTER'S FORGOTTEN FORM OF THE RESULTANT 

Consider the two polynomials in Z[x], px(x) = cnxn + cn_lx"~l -\ \-c0 and p2(x) - dmxm + 

dm_xxm~l + -"+dQicn&0,dm^0,n>m. In the literature, the most commonly encountered forms 
of the resultant of px(x) mdp2(x) (both known as "Sylvester's" forms) are: 
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resB(p1(x\p2(x)) = 

and 

resT(pl(x),p2(x)): 
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where in both cases we have m rows of c's and n rows of ds; that is, the determinant is of order 
m + n. Contrary to established practice, we call the first di Bruno's and the second Trudi's form 
of the resultant [3] (di Bruno was sanctified by the Roman Catholic Church in the 1980s). Notice 
that r e s^ /^x ) , p2(x)) = ( - l ^ ' ^ r e s ^ i j ^ x ) , p2(x)). For these two forms of the resultant, the 
following theorem holds. 

Theorem 1 (Laidacker [12]): If we transform the matrix corresponding to res5(/?1(x),/?2(x)) 
into its upper triangular form TB(R) using row transformations only, then the last nonzero row of 
TB(R) gives the coefficients of a greatest common divisor off px(x) and/?2(x). 

Theorem 1 indicates that using these forms of the resultant we can obtain only a greatest 
common divisor of px(x) mdp2(x) but, in general, none of the remainder polynomials. 

In order to compute both a gcd(/?1(x),/?2(x)) and all the polynomial remainders we have to 
use Sylvester's form of the resultant. We choose to call Sylvester's form the one described below; 
this form was "buried" in Sylvester's 1853 paper [14] and is only once mentioned in the literature 
in a paper by Van Vleck [15]. Sylvester indicates [14, p. 426] that he had produced this form in 
1839 or 1840 and some years later Cayley unconsciously reproduced it as well. This form is of 
order In (as opposed to n + m for the other two forms) and can be written as follows [p2 (x) has 
now been transformed into a polynomial of degree n by introducing zero coefficients]: 
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™*s(Pi(x), &(*)) = 
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(S) 

Sylvester obtained this form from the system of equations [14, pp. 427-28] 

A(*) = 0 
p2(x) = 0 

xpl(x) = 0 
x-p2(x) = 0 

x2 •p1(x) = 0 
x2-p2(x) = 0 

c""1 

,-«-! 
x" ~-Pl(x) = ® 
x -p2(x) = 0 

and he indicated that if we take k pairs of the above equations, the highest power of x appearing in 
any of them will be xn+k~l. Therefore, we shall be able to eliminate so many powers of x that 
xn~k will be the highest power uneliminated and n - k will be the degree of a member of the 
Sturmian polynomial remainder sequence generated by px(x) mdp2(x). Moreover, Sylvester 
showed that the polynomial remainders thus obtained are what he terms simplified residues; that 
is, the coefficients are the smallest possible obtained without integer gcd computations and with-
out introducing rationals. Stated in Sylvester's words, the polynomial remainders have been freed 
from their corresponding allotrious factors. 

It has been proved [15] that if we want to compute the complete polynomial remainder 
sequence px{x),p2(x),p3(x), ...,ph(x), degfjt^x)) - n, deg(p2(x)) = m,n>m, we can obtain the 
(negated) coefficients of the (i + lf1 member of the prs, i = 0, 1, 2, ..., h - 1, as minors formed 
from the first 2/ rows of (S) by successively associating with the first 2/ - 1 columns [of the (2/) 
by (In) matrix] each succeeding column in turn. 

However, instead of proceeding as in [15], and in order to handle incomplete prs's as well, 
we transform the matrix corresponding to the resultant (S) into its upper triangular form and 
obtain the members of the prs with the help of Theorem 2 below. We also use Dodgson's integer-
preserving transformation algorithm [8], which works as follows: Suppose that 

r(0)=r.. v V ij= 1, ...,w 
are the matrix elements at the beginning of the algorithm (0th iteration). There are n iterations 
performed, and in the kth one (indicated here) the following actions are taken: (a) the elements of 
the kxh column located below the k^ (diagonal) element are being turned to zero, (b) all the 
elements located in rows and columns greater than k get updated as shown below, and (c) all the 
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other elements of the matrix remain unchanged. In this way, at the end of the process, all the 
elements of the matrix located below the diagonal are zero. That is, we have: let 

^ = 1, and rfj0)=rU9 i,j = l,...,n; 
then for k < i, j < n, 

r,w: = (yi££,)-' '** rkj 

ik rij 
(D) 

Of particular importance in Dodgson's algorithm is the fact that the determinant of order 2 is 
divided exactly by r^2^ (a very short and clear proof of (D) is described in Bareiss's paper 
[4]—see also the Historical note at the end of this paper) and that the resulting coefficients are the 
smallest that can be expected without coefficient gcd computations and without introducing 
rationals. Notice how all the complicated expressions for j3; in the reduced and subresultant prs 
algorithms are mapped to the simple factor r ^ j ^ of this method. 

It should be pointed out that using Dodgson's algorithm (D) we will have to perform pivots 
(interchange two rows) which will result, in a change of signs. We define the term bubble pivot as 
follows: if the diagonal element in row / is zero and the next nonzero element down the column is 
in row i + j , j > 1, then row i +7 will beccome row / after pairwise interchanging it with the rows 
above it. (Note that, after a bubble pivot, ex-row i becomes row i + 1, whereas with regular pivot 
it would have become row i +j.) Bubble pivot preserves the symmetry of the determinant. 

The following theorem helps us locate the members of the (complete or incomplete) prs in 
the final, triangularized, matrix. 

Theorem 2 ([2]): Let px(x) and/?2(x) be two polynomials of degrees n and m, respectively, 
n>m. Then, using Dodgson's algorithm (D), transform the matrix corresponding to 
TGSs(Pi(xX PiO0)) mt0 lts uPPer triangular form TS(R); let nt be the degree of the polynomial 
corresponding to the /th row of TS(R), i = 1, 2, ..., 2w, and let pk(x), k > 2, be the kth member 
of the (complete or incomplete) polynomial remainder sequence of px(x) and/?2(x). Then if 
pk(x) is in row i of TS(R), the coefficients of pk+l(x) (within sign) are obtained from row / +j of 
TS(R), where j is the smallest integer such that ni+j <nr [If n = m, associate both px(x) and 
p2(x) with the first row of Ts(R).] 

Therefore, we see that, based on Theorem 2, we have a new method for computing the 
polynomial remainder sequence and a greatest common divisor of two polynomials. This new 
method uniformly treats both complete and incomplete prs's and provides the smallest coefficients 
that can be expected without coefficient gcd computation. 
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3. THE MATRIX-TMANGULARIZATION SUBRESULTANT PRS METHOD 

The inputs are two (primitive) polynomials in Z[x], px(x) = cnxn +cn_lxn~l + ••• +c0 and 

Step 1: Form the resultant (S), ress (jp^x), p2(x)), of the two polynomials Pi(x) and p2(x). 

Step 2i Using Dodgson's algorithm (D) (and bubble pivot), transform the matrix corre-
sponding to the resultant (S) into its upper triangular form TS(R); then the coefficients of all the 
members of the polynomial remainder sequence of px(x) and p2(x) a r e obtained from the rows of 
TS(R) with the help of Theorem 2. 

The computing time of this method is given by the following theorem (see [2]). 

Theorem 3: Let px (x) = cnxn + cw_1xw~1 H— + c0 and p2 (x) = dmxm + dm_lxm~l + —b d0, cn ^ 0, 
dm^Q,n>m,he two (primitive) polynomials in Z[x] and, for some polynomial P(x) in Z[x] let 
IP^ represent its maximum coefficient in absolute value. Then the method described above com-
putes a greatest common divisor of p^x) and p2(x) along with all the polynomial remainders in 

time 0(n5L(\p\co )2) where \p\w = maxfl/?^, |/?2l<» ) andZfl/?^) is t n e length, in bits (or even the 
logarithm) of the maximum coefficient (of the two polynomials) in absolute value. 

Proof: The result follows by combining (a) the well-known result that in the matrix-triangu-
larization procedure there are performed 0(n3) multiplications and (b) the fact that we are now 
using exact integer arithmetic and, hence, each multiplication is executed in time 0(n2L(\p\ao)2) 
(see [2] and [3]). • 

Below, we present the example stated in the introduction solved using this new approach; the 
reader should observe that the coefficients obtained for p3(x) are smaller than those obtained 
using the reduced (or the improved, for that matter) subresultant prs algorithm. 

Example: Let us find the polynomial remainder sequence of the polynomials px{x) = x3 -lx + 1 
and p2{x)-3x1 -1 using the matrix-triangularization procedure described above. Below, the 
matrix on the left side is the starting one, and the one on the right side is the final (transformed) 
one, obtained after application of Dodgson's method (D). 

1 
0 
0 
0 
0 
0 

0 
3 
1 
0 
0 
0 

- 7 
0 
0 
3 
1 
0 

7 
- 7 
- 7 
0 
0 
3 

0 
0 
7 

- 7 
- 7 
0 

0 
0 
0 
0 
7 

- 7 

=> 

1 
0 
0 
0 
0 
0 

0 
3 
0 
0 
0 
0 

- 7 
0 
9 
0 
0 
0 

7 
- 7 
0 

-42 
0 
0 

0 
0 

-21 
63 
196 
0 

0 
0 
0 
0 

-294 
-49 

The *-ed row indicates that a (normal) pivot was performed between the third and fourth rows. 
With the help of Theorem 2 we see, from the transformed matrix, that the polynomial remainders 
(within sign) are p3(x) - -42x + 63 and/?4(x) = -49 (as obtained before); also note that, using 
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this approach, there is no way For us to obtain the quotients. The smaller coefficients for p3(x) 
are obtained if we save the row before picot; in our example, the row before pivot was p3(x) -
-14*+ 21, which was then changed to p3(x) = -42x + 63. Thus, the remainder polynomials are 
p3(x) = -14x + 2l and/?4(x) = -49 and, in this case, we did manage to reduce the coefficients of 
ftW! 
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Historical Note: Note that we depart from established practice and give credit to Dodgson—and 
not to Bareiss [4]—for the integer-preserving transformations; see also the work of Waugh and 
Dwyer [16] where they use the same method as Bareiss, but 23 years earlier, and they name 
Dodgson as their source—differing from him only in the choice of the pivot element [16, p. 266]. 
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