REDUCED AND AUGMENTED AMICABLE PAIRS TO 10^{8}

Walter E. Beck ${ }^{*}$
Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614-0507

Rudolph M. Najar

Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108
(Submitted October 1991)

1. PRELIMINARIES

A reduced amicable pair is a pair of natural numbers, m and n, such that

$$
m=\sigma(n)-n-1 ; \quad n=\sigma(m)-m-1
$$

where σ is the sum of divisors function. Jerrard and Temperley [4] studied numbers k satisfying $k=\sigma(k)-k \pm 1$ which they named almost perfect numbers. Lal and Forbes [5] first studied reduced amicable pairs and discovered nine pairs with smaller number $\leq 10^{5}$. (They coined the name "reduced amicable pair.") In an earlier paper [1], we extended the search to pairs with smaller number $\leq 10^{6}$, finding six new pairs. Hagis and Lord [3] extended the list to 10^{7}, discovering thirty-one new pairs, including two missed in [1]. The present paper extends the listing to 10^{8}. The paper [1] included a study of pairs m and n satisfying

$$
m=\sigma(n)-n+1 ; \quad n=\sigma(m)-m+1,
$$

called augmented amicable pairs and listed all pairs with smaller number less than 10^{6}. There were nine plus two other pairs both of whose elements exceeded one million. These arose from iterating the function $s_{+}(n)=\sigma(n)-n+1$ on integers less than one million. A computer search extended the list to all pairs with smaller number less than one hundred million. Table 2 lists the pairs with one element less than ten million, except for powers of 2 . Powers of 2 are fixed points of s_{+}and are not included here. A complete list of the 84 pairs up to 10^{8} is available from either author. The searches were carried out on the CRAY Y-MP at the University of Illinois at Urbana-Champaign, on Sun 4 work stations at the University of Northern Iowa, and on NeXT and Macintosh IIci stations at California State University, Fresno. Over half the search was run twice, once each at the latter two institutions.

[^0]ON INDEPENDENT PYTHAGOREAN NUMBERS

2. TABLES OF REDUCED AND AUGMENTED AMICABLE PAIRS

The tables of reduced and augmented amicable pairs follow.
TABLE 1. Reduced Amicable Pairs from 10^{7} to $\mathbf{1 0}^{8}$

1.	$12146750=5(3) \cdot 7 \cdot 11.631 ;$	$16247745=3(2) \cdot 5 \cdot 127 \cdot 2843$
2.	$12500865=3(3) \cdot 5 \cdot 13 \cdot 17.419$;	$12900734=1.7 .11 .19 .4409$
3.	$13922100=2(2) \cdot 3(2) \cdot 5(2) \cdot 31 \cdot 499$;	$31213899=3(2) .1549 .2239$
4.	$14371104=2(5) .3 .11 .31 .439$;	$28206815=5.7 .13 .47 .1319$
5.	$22013334=2.3(2) \cdot 7 \cdot 17 \cdot 43.239$;	$37291625=5(3) \cdot 7 \cdot 17 \cdot 23.109$
6.	$22559060=2(2) \cdot 5 \cdot 47 \cdot 103.233$;	$26502315=3.5 .7 .83 .3041$
7.	$23379224=2(3) \cdot 11.23 .11551 ;$	$26525415=3.5 .7(2) .151 .239$
8.	$23939685=3(3) \cdot 5 \cdot 7(3) \cdot 11.47$;	$31356314=2.11 .23 .31 .1999$
9.	$26409320=2(3) \cdot 5 \cdot 7 \cdot 257.367$;	$41950359=3(3) \cdot 11.127 .1031$
10.	$27735704=2(3) \cdot 17 \cdot 109.1871 ;$	$27862695=3(2) \cdot 5 \cdot 7 \cdot 197.449$
11.	$28219664=2(4) \cdot 11.109 .1471 ;$	$32014575=3(3) \cdot 5(2) \cdot 43 \cdot 1103$
12.	$33299000=2(3) \cdot 5(3) \cdot 7 \cdot 67 \cdot 71 ;$	$58354119=3(2) \cdot 29.47 \cdot 67.71$
13.	$34093304=2(3) .97 .31 .41 .479$;	$43321095=3(3) \cdot 5 \cdot 223.1439$
14.	$37324584=2(3) .3(3) \cdot 11.23 .683 ;$	$80870615=5.7 .17 .199 .683$
15.	$40818855=3.5 .7 .11 .59 .599$;	$42125144=2(3) \cdot 23.179 .1279$
16.	$41137620=2(2) \cdot 3 \cdot 5 \cdot 17 \cdot 31 \cdot 1301 ;$	$84854315=5.7 .13 .251 .743$
17.	$49217084=2(2) \cdot 7 \cdot 47 \cdot 149.251$;	$52389315=3$ (3).5.11.35279
18.	$52026920=2(3) \cdot 5 \cdot 11 \cdot 23.53 .97$;	$85141719=3(3) .13 .107 .2267$
19.	$52601360=2(4) \cdot 5 \cdot 7 \cdot 29.41 .79$;	$97389039=3.11 .17 .173599$
20.	$61423340=2(2) \cdot 5 \cdot 11.23 .61 .199 ;$	$88567059=2.7(3) \cdot 17.61 .83$
21.	$62252000=2(5) .5(3) \cdot 79.197 ;$	$93423519=3(2) \cdot 7 \cdot 107 \cdot 13859$
22.	$64045904=2(4) \cdot 13.367 .839$;	$70112175=3.5(2) \cdot 7 \cdot 83.1609$
23.	$66086504=2(3) .11 .750983$;	$69090615=3(2) \cdot 5 \cdot 11 \cdot 29.4813$
24.	$66275384=2(3) \cdot 7 \cdot 17 \cdot 43 \cdot 1619$;	$87689415=3.5 .11 .179 .2969$
25.	$68337324=2(2) \cdot 3(3) \cdot 11.23 .41 .61 ;$	$141649235=5.7 .13 .419 .743$
26.	$72917000=2(3) \cdot 5(3) \cdot 13.71 .79 ;$	$115780599=3(2) \cdot 11 \cdot 47 \cdot 149.167$
27.	$76011992=2(3) \cdot 7 \cdot 179.7583$;	$87802407=3(3) \cdot 7 \cdot 11.157 .269$
28.	$77723360=2(5) \cdot 5 \cdot 511.13 .43 .79$;	$145810719=3$ (3).41.107.1231
29.	$89446860=2(2) \cdot 3(2) \cdot 5 \cdot 17 \cdot 29231 ;$	$197845235=5.7 .17 .332513$
30.	$93993830=2.5 .7 .727 .1847$;	$99735705=3(5) \cdot 5 \cdot 23 \cdot 43 \cdot 83$
31.	$94713300=2(2) \cdot 3(4) \cdot 5(2) \cdot 11.1063 ;$	$240536075=5(2) \cdot 13 \cdot 37 \cdot 83 \cdot 241$
32.	$94970204=2(2) \cdot 7 \cdot 107.31699$;	$96751395=3(3) \cdot 5 \cdot 13 \cdot 29.1901$
33.	$97797104=2(4) \cdot 19.23 .71 .197$;	$114332175=3(3) \cdot 5(2) \cdot 107 \cdot 1583$

Conjecture 0: There are infinitely many reduced (augmented) amicable pairs.
All pairs found have opposite parity. Since $\sigma(n)=m+n \pm 1=\sigma(m), m$ and n have the same parity iff $\sigma(n)=\sigma(m)$ are odd iff odd prime factors in m and n occur only in even powers. Thus, we have

Conjecture 1: The numbers in a reduced (augmented) amicable pair are of opposite parity.
For each pair, consider the ratio k of the larger number divided by the smaller. In Table 1 the ratios range from 1.0045786 to 2.53962 ; in Table 2 from 1.0011028 to 2.64749 . Thus,

Conjecture 2: For any $\beta>0$, no matter how small, there exists a reduced (augmented) amicable pair such that $1<k<1+\beta$.

TABLE 2. Augmented Amicable Pairs to $\mathbf{1 0}^{7}$

1.	$6160=2(4) \cdot 5.7 .11 ;$	$11697=3.7 .557$
2.	$12220=2(2) \cdot 5 \cdot 13.47$;	$16005=3.5 .11 .97$
3.	$23500=2(2) \cdot 5(3) \cdot 47$;	$28917=3(5) .7 \cdot 17$
4.	$68908=2(2) \cdot 7 \cdot 23 \cdot 107$;	$76245=3.5 .13 .17 .23$
5.	$249424=2(4) \cdot 7 \cdot 17.131$;	$339825=3.5(2) \cdot 23.197$
6.	$425500=2(2) .5(3) \cdot 23.37$;	$570405=2.5 .11 .3457$
7.	$434784=2(5) \cdot 3.7 .647$;	$871585=5.11 .13 .23 .53$
8.	$649990=2.5 .11 .19 .311 ;$	$697851=3(2) \cdot 7 \cdot 11.19 .53$
9.	$660825=3(3) \cdot 5(2) \cdot 11.89 ;$	$678376=2(3) \cdot 19.4463$
10.	$1017856=2(11) .7 .71$;	$1340865=3(2) \cdot 5 \cdot 83 \cdot 359$
11.	$1077336=2(3) \cdot 3(2) \cdot 13 \cdot 1151 ;$	$2067625=5(3) \cdot 7 \cdot 17.139$
12.	$1238380=2(2) \cdot 5 \cdot 11.13 .433$;	$1823925=3.5(2) .83 .293$
13.	$1252216=2(3) \cdot 7 \cdot 59.379$;	$1483785=3(3) \cdot 5 \cdot 29.379$
14.	$1568260=2(2) \cdot 5 \cdot 19.4127$;	$1899261=3(3) \cdot 7 \cdot 13.773$
15.	$1754536=2(3) \cdot 7 \cdot 17 \cdot 19.97$;	$2479065=3.5 .29 .41 .139$
16.	$2166136=2(3) \cdot 7 \cdot 47.823$;	$2580105=3.5 \cdot 11.19 .823$
17.	$2362360=2(3) \cdot 5 \cdot 7 \cdot 11.13 .59$;	$4895241=3.13 .31 .4049$
18.	$2482536=2(3) \cdot 3.7(2) \cdot 2111$;	$4740505=5.7(2) .11 .1759$
19.	$2537220=2(2) \cdot 3 \cdot 5 \cdot 7(2) \cdot 863 ;$	$5736445=5.11 .13 .71 .113$
20.	$2876445=3(3) \cdot 5 \cdot 11.13 .149$;	$3171556=2(2) \cdot 19.29 .1439$
21.	$3957525=3(3) \cdot 5(2) \cdot 11.13 .41$;	$4791916=2(2) \cdot 41.61 .479$
22.	$4177524=2(2) \cdot 3 \cdot 13.61 .439$;	$6516237=3.7 .13 .23869$
23.	$4287825=3(2) \cdot 5(2) \cdot 17 \cdot 19 \cdot 59$;	$4416976=2(4) .59 .4679$
24.	$5224660=2(2) \cdot 5 \cdot 7 \cdot 67.557$;	$7524525=3.5(2) .41 .2447$
25.	$5559510=2.3 .5 .11 .17 .991 ;$	$9868075=5(2) \cdot 7 \cdot 17 \cdot 31 \cdot 107$
26.	$5641552=2(4) \cdot 7 \cdot 17 \cdot 2963 ;$	$7589745=3(2) \cdot 5 \cdot 227.743$
27.	$5654320=2(4) \cdot 5 \cdot 7 \cdot 23.439$;	$10058961=3.11 .19 .61 .263$
28.	$5917780=2(2) \cdot 5 \cdot 11.37 .727$;	$8024877=3(2) .7(2) \cdot 31.587$
29.	$6224890=2.5 .7 .17 .5231 ;$	$7336455=3.5 \cdot 7 \cdot 107.653$
30.	$6274180=2(2) \cdot 5 \cdot 11 \cdot 19(2) \cdot 79$;	$9087741=3(3) \cdot 13 \cdot 17 \cdot 1523$
31.	$6711940=2(2) \cdot 5 \cdot 17 \cdot 19 \cdot 1039$;	$9012861=3(2) \cdot 11 \cdot 13.47 \cdot 149$
32.	$7475325=3.5(2) \cdot 11.13 .17 .41$;	$8273668=2(2) \cdot 13 \cdot 107 \cdot 1487$
33.	$7626136=2(3) \cdot 7.43 .3167$;	$9100905=3.5 .11 .19 .2903$
34.	$7851256=2(3) \cdot 7 \cdot 19 \cdot 47 \cdot 157$;	$10350345=3.5 \cdot 19.23 .1579$
35.	$7920136=2(3) \cdot 7 \cdot 233 \cdot 607$;	$9152505=3(2) \cdot 5 \cdot 23.37 .239$
36.	$9026235=3(5) .5 .17 .19 .23$;	$9843526=2.7 .11 .41 .1559$

3. THE UNITARY CASE

In [2] searches for the unitary analogues of reduced and augmented amicable pairs to 10^{5} were reported. Except for trivial cases, none were found. The search has been extended to 10^{6} with no new results.

REFERENCES

1. W. Beck \& R. M. Najar. "More Reduced Amicable Pairs." Fibonacci Quarterly 15.4 (1977): 331-32.
2. W. Beck \& R. M. Najar. "Fixed Points of Certain Arithmetic Functions." Fibonacci Quarterly 15.4 (1977):337-42.
3. P. Hagis, Jr., \& G. Lord. "Quasi-Amicable Numbers." Math. Comp. 31 (1977):608-11.
4. R. P. Jerrard \& N. Temperley. "Almost Perfect Numbers." Math. Magazine 46 (1973):8487.
5. M. Lal \& A. Forbes. "A Note on Chowla's Function." Math. Comp. 25 (1971):923-25.

AMS numbers: 11A25; 11A99; 11B99

APPLICATIONS OF FIBONACCI NUMBERS

VOLUME 4
 New Publication

Proceedings of 'The Fourth International Conference on Fibonacci Numbers and Their applications, Wake Forest University, July 30-August 3, 1990'

Edited by G. E. Bergum, A. N. Philippou, and A. F. Horadam
This volume contains a selection of papers presented at the Fourth International Conference on Fibonacci Numbers and Their Applications. The topics covered include number patterns, linear recurrences, and the application of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, computer science, and elementary number theory. Many of the papers included contain suggestions for other avenues of research.

For those interested in applications of number theory, statistics and probability, and numerical analysis in science and engineering:

> 1991, 314 pp. ISBN $0-7923-1309-7$
> Hardbound Dfl. $180.00 / £ 61.00 /$ US $\$ 99.00$
A.M.S. members are eligible for a 25% discount on this volume providing they order directly from the publisher. However, the bill must be prepaid by credit card, registered money order, or check. A letter must also be enclosed saying "I am a member of the American Mathematical Society and am ordering the book for personal use."

KLUWER ACADEMIC PUBLISHERS

P.O. Box 322, 3300 AH Dordrecht, The Netherlands

P.O. Box 358, Accord Station
Hingham, MA 02018-0358, U.S.A.

Volumes 1-3 can also be purchased by writing to the same address.

[^0]: * The first author was partially supported by National Center for Supercomputing Applications under TRA910033N and utilized the CRAY Y-MP system at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign.

