
A FIBONACCI POLYNOMIAL SEQUENCE DEFINED BY 
MULTIDIMENSIONAL CONTINUED FRACTIONS; 

AND HIGHER-ORDER GOLDEN RATIOS 

Gregory A. Moore 
University of California, San Diego, San Diego, CA 92093-0112 

(Submitted January 1992) 

INTRODUCTION 

A sequence of polynomials is a Fibonacci Sequence if it satisfies the recursion: 

fn*2(x) = ffnn(x) + fn(x) &T » > 0. (1) 

Two well-known Fibonacci sequences are the Fibonacci Polynomials, {Fn(x)}, defined using (1) 
with Fl(x) = lmdF2(x) = x9 and the Lucas Polynommials, {Zw(x)}, defined using (1) with 
Ll(x) = 2mdL2(x) = x ([1], [3], [4], [11], [12], [22], [23]). In addition to being Fibonacci 
sequences, these polynomials produce Fibonacci and Lucas numbers, respectively, when evaluated 
at+1. 

Here we examine a sequence of polynomials {Gn(x)} originating from multidimensional con-
tinued fractions with all one's. The golden ratio is a root of the quadratic polynomial in this 
sequence; hence, there is justification to consider the roots of the other polynomials in this 
sequence to be higher-order golden ratios. Surprisingly, these polynomials also form a Fibonacci 
sequence, and Fibonacci and Lucas numbers result when evaluated at +1 and - 1 , respectively. 

It turns out that the Fibonacci and Lucas polynomials, as well as this new sequence are exam-
ples of a larger class of Fibonacci polynomial sequences. We develop an explicit formula for this 
class and show specifically how the Fibonacci numbers are involved when evaluated at ±1. 

1. DEFINITION OF THE GOLDEN POLYNOMIALS {Gn(x)} 

The continued fraction 

1+ 
1 + -

satisfies the equation 
x = l + — 

x 

which is readily converted to the polynomial equation x2 - x -1 = 0. We define G2 (x) to be this 
second-degree polynomial, and denote its positive root as g2. This root is the value of the contin-
ued fraction in (2), namely, the golden ratio 

i-r-Vs g2=~T' 
Now consider a continued fraction of the form 
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1 + -
1 + -

(3) 

1 + -
V ! + •• 

Whereas the sequence of denominators in the continued fraction in (2) could be written in a list, 
the denominators of (3) would require a binary tree of all l's. This continued fraction can be 
written as 

1 
x = l + -

x + -
1 

or as the polynomial equation G3(x) = x3 - x 2 - 1 = 0, which has the value of (3) as a solution. 
Analogously, we designate this single positive root by g3 as an indication that it is a root of the 
third-degree polynomial G3(x). 

This process can be extended. Consider the family of recursive equations of the form 

x = l + - 1 

x + -
x + -

x + -
(4) 

n-\ x's 

These equations represent multidimensional continued fractions of all l's that have n - 1 branches 
at each level. For each n, this equation can be transformed into an n^ degree polynomial 
equation G„(x) = 0. (For n = 1, there are no x's on the right side, so it is natural to define 
Gl(x) = x-l.) 

In this way, we get a sequence of functions {G„(x)}. Since each function G„(x) has a 
positive maximal root gn [17], we also obtain a sequence of positive numbers {gn}. In Section 5, 
we will see that there is justification to consider these roots to be higher-order golden ratios. 
Because of this, we will refer to these polynomials {Gn(x)} as the "Golden Polynomials." 

For example, we can write the coefficients for some of these polynonjials as shown in Figure 
1. Whereas the sum of the coefficients in the 17th row of Pascal's triangle is 2", the sum shown 
here is -Fn_l (proven in Corollary 2.4 below). For other approaches to the generalization of the 
continued fraction algorithm, the reader is referred to Bernstein [2] and Szerkeres [21]. 

1993] 355 



A FIBONACCI POLYNOMIAL SEQUENCE DEFINED BY MULTIDIMENSIONAL CONTINUED FRACTIONS 

n = l 1 -1 
n = 2 1 - 1 - 1 
« = 3 1 - 1 0 - 1 

« = 4 1 - 1 1 - 2 - 1 

n = 5 1 - 1 2 - 3 - 1 - 1 

w = 6 1 - 1 3 - 4 0 - 3 - 1 

n = l 1 - 1 4 - 5 2 -6 - 2 - 1 

« = 8 1 - 1 5 - 6 5 -10 - 2 - 4 - 1 

n = 9 1 -1 6 -7 9 -15 0 -10 -3 -1 

n = \0 1 - 1 7 - 8 14 -21 5 -20 -5 - 5 - 1 

FIGURE 1 

2. FIBONACCI POLYNOMIAL SEQUENCES 

A convenient way to express the Fibonacci recursion in (1) is to define the functional 

®(J,g) = X'f(x) + g(x). 
Similarly, we can represent a Fibonacci sequence generated by this functional by 

W i , /<,} = (/„ l/„+2 = ®<yB+i, /„) for n > 0}. 

This notation emphasizes that the entire sequence depends only on the two seed functions. 
All Fibonacci sequences can be represented in this way. For example, 

<D{x, 1} = {1, x, x2 +1,...} = {Fn(x)} = the Fibonacci Polynomials; 

<J>{x, 2} = {2, x, x2 +2,...} = {Ln(x)} = the Lucas Polynomials. 

It is clear that there are many such sequences, and we let 3F denote the set of all sequences gener-
ated in this way. Other approaches to the structure of Fibonacci-type polynomials have been 
pursued in Horadam [14], Shannon [19], and Dilcher [9]. 

A number of simple properties are evident. 

Observation 2.1: 

a. <D(c-f,c-g)-c-<E>(/,g) for any constant c. 

*• ®(fl,gl) + ®(f2>g2) = ®(fl+f2,gl+g2l 
c. {fn}^o{-f„}e®. 

* {fn}Agn}^^{fn+gn}^-
ft If hn= * ( / „ , gn\ where {fn},{gn}e&, then {^}e5 . 

To show that {Gn{x)} is a Fibonacci sequence, we will need the following lemma. 
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Lemma 2.2: The polynomial numerator and denominator obtained by simplifying the expression 
1 

x + -
x + -

1 
x + -

are Fn+l(x) andFw(x) respectively. 

Proof: The lemma is easily verified for n = 1 and n = 2. Now assume the lemma holds for all 
k<n. We can then write the expression with n x's as follows: 

x + -
x + 

1 
1 

x + — 
...J 

= x + - V = *+T-
i _xF,(x) + F„_1(x)^i^+1(x) 

x + -
v • * • / 

n-\ x's 

*;(*) 
,^,-iW 

Fn(x) F„(x) 

Noting that the consecutive Fibonacci polynomials share no common factors, and that {Fn(x)} = 
<D{x, 1} G 2?, this completes the proof. D 

We now show that the sequence of Golden Polynomials {Gn(x)} is a Fibonacci sequence. 

Theorem 2.3: {Gn(x)}e&. 

Proof: Substituting Fn(x) andi^_x(x) into (4) gives 

1 , . 1 _F„(x) + F„_l(x) 
x = l 

F«(x) 

n-l x's 

(5) 
Simplifying, we have 

Gn(x) = xFn(x)-(Fn(x) + Fn_1(x)) = 0. 

By Observations 2.1.c and 2.1.d and Lemma 2.2, we have {-(i^W + i^l^x))} e^„ By Obser-
vation 2,. 1 .e, it follows that {Gn(x)}e&. D 

The Golden Polynomials are easily seen to be 

{Gn(x)} = ®{x-\-l}. 

During the proof we discovered a relationship between these polynomials {Gn(x)} and the 
Fibonacci Polynomials {Fn(x)}. Rewriting (5), we have Gn(x) = (x-l)Fn(x)-Fn_l(x). Evalua-
ting at ±1 gives 
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Corollary 2.4: 
a. G„(l) = - i v 1 . 
b. GM(-1) = (-1)"4_1. 

This establishes another connection between continued fractions and the Fibonacci and Lucas 
numbers. 

3. A SIMPLE GENERALIZATION 

A familiar method of generalizing the golden ratio (Coleman [7], Raab [18], Bicknell & 
Hoggatt [4]) is to define "silver" and various other metallic ratios by forming a rectangle of 
dimensions 1 by x and removing c unit squares (see Figure 2 below). If the remaining rectangle is 
similar to the original, then x is called a "generalized golden ratio." 

# 1 # 2 # 3 # c - 1 # c 

FIGURE 2 

It is easily demonstrated that these numbers are precisely those that are expressed by contin-
ued fractions of period 1. If we then consider multidimensional continued fractions of period 1 
and write them recursively as before, we would have a sequence of polynomials corresponding to 
each positive integer. For example, the cubic continued fraction of period 1, with c as the con-
stant in the denominators, i& 

x = c + -
1 

• = c + - 1 

(c+- ) + ( C + - ) 
x + -

(c+-..) + 
( C + - ) 

Simplifying gives the third-degree polynomial H3(x, c) = x3 -ex2 -c. In this way, we obtain the 
sequence {Hn(x, c)} = <J>{x-c, -c} where the coefficients of Hn(x,c) are the same as those 
Gn(x) with every other coefficient having an additional factor of c. In fact, these polynomials 
satisfy the relation Hn(JC, c) = (1 /2){(1 + c)G(x) + (1 - c)G(-x)]. Theorem 2.3 is easily extended 
to these polynomial sequences as well, i.e., {Hn(x, c)} G3* . 

4. AN EXPLICIT FORMULA FOR FIBONACCI SEQUENCES 

Consider the Fibonacci sequences of the form ®{ax + b, c}. This class includes both the 
Fibonacci and Lucas Polynomials as well as the Golden Polynomials {Gn(x)} and generalized 
Golden Polynomials {Hn(x; c)}. Here we examine an explicit formula for the functions in such a 
sequence. 
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We will use the following notational conventions: 

a. Binomial Coefficients: C „ ^ r J = f ! H ) ! 

' \KJ [0, iork<0ovk>n. 
b* Greatest Integer Function: \x\ = k, for the greatest integer function. 

fl if k is even, 
c. Parity Function: 8k 

[0 if k is odd. 

Theorem 4.1: For fn(x) e®{ax + Z>, c}, 

/„(*)=ix***-*, 
where ^,> t =5n>jt -(a-5t +*- ( l -5 t ) ) + 5'fI_jft_2-(c-5k) 

^-Lfj-o 
and 5„>k = 

L*J J 

Proof: The formula is verified by direct computation for72 = 1 and n = 2: 

/1(x) = (a-l + 6-0 + c-0)jc + (a-0 + i - l + c-0) = or + A, and 

/2(x) = ( a 4 + *-0 + c-0)x2+(a-0 + 6-l + c-0)x + (a-0 + 6-0 + c-l) = ox:2+*x + c. 

Proceeding by induction, we write 
W+l /I 

n+l-k . \T* n „n-k 

fc = 0 Jfc=0 

«+l « 

= K+1,0X"+2 +K>UlXn+1 + "f((K+i,k+2 +Rn,k)x"-k) + Rn,n-
k=0 

It now becomes a matter of verifying that the coefficients are correct. The first two terms are: 

^ , + i ,o=^i ,o( f l - 1 + *-1) + 0-c(l) = a."5r
ll+lfo 

~ a'^n,0 = # * 1 = A " ^ „ + l , 0 = a ' ^n+2,0 = ^n+2,0 

~®'tn,0 = 0 - l = D' C „ + l j o ~ ^ ' ^«+2,1 = Ki+2,1 • 

Now consider the constant term 
K,n = Sn,n(a-8k+b-(l-8k)) + Sn_hn_2c-8k. 
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If n is odd, n = 2m + 1, and we have 

^ n ^ b ' S u n=b-Cmm = b • 1 = b• Cm+l m+l =b-Sn+2fn+2 - Rn+2,n+2-

Ifn is even, n = 2m, and then 

S! — c -n-r - S! 
Lfn,n~^m-l,m u ^m+l,m+2 un+2,n+2> 

Substituting these in, we have 

Rr,,n=a'Sn,n+C'Sn-l,n-2=a'0 + C ' 1 

~ a ' ^n+2, n+2 + C' \ + l , n ~ Ki+2, n+2 • 

All of the other coefficients are of the form: 

,̂-f-l, >t + ̂ , >t-2 = [^-1, ^ + ̂  Xr-2 K^' ^^ + * • (1 - 5^ )) 4- [^^D^^ ^_2 + ^ . ^ (^_2)_2 ]^ • 5^ ). 

It will suffice to show that Sn+li k + S„t k_2 - $n+2, k • Writing j = [k 12], we have 

Sn+l,k +Sn,k-2 ~ Cn-j,j +Cn-j,j-l ~ Cn+l-j,j ~ $n+2,k 

by the well-known additive relationship of Pascal's triangle. • 

Noting that {Gn(x)} = cD{jt - 1 , -1}, we have an explicit formula for the Golden Polynomials. 

Corollary 4.2: G„(x) = £ ( ($ , .* -S„^k_2)8k -S„,k(l-8k))x-k. 
k=\ 

We can also make a number of simple observations about this type of sequence. 

Corollary 4.3: For each fn e <&{ax + b, c}, 

a. (the leading coefficient of fn(x)) = (the leading coefficient of fx(x)) = a. 

b. (the trace of /„(*)) = (-1)" • (the trace of f0(x)) = (-1)" -c. 

c. (the norm of fn(x)) = (the norm of fx(x)) = b. 

* fm(0) = /0(0) = c and / ^ ( O ) - ^(0) = b. 

We can now see how Fibonacci numbers are present in all sequences of this type. 

Corollary 4.4: For each fn e<D{ax +b, c}, 

fn(l) = a.Fn+b.Fn+c-F„_l and fn{-\) = (-!)»(a-Fn-b-Fn+c-F^). 
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Proof: Theorem 4.1 can be expressed more conveniently as 

k=0 
A: even 

k=0 
£odd 

k=0 
keven 

Evaluating at 1 gives 

/„(l) = «E^+JI^a+cIW-2 

which can be found in [4]. Applying this to the first sum in each of (6)-(8), we have 

k<n 

£j$n,k ~ LJ 
k=0 

keven 
k=0 

keven w j 
= F. 

Similarly, the second and third sums become 
n n 

JlSn,k=Fn and X Sn-l,k-2 = Fn-V 
k=0 

fcodd 
k=0 

keven 

(6) 
k=0 k=0 k=Q 

k even k odd k even 

Evaluating at -1 gives 

/„(-!) = ' 

n n n 
a HSn,k ~b JlSn,k +C HSn-l,k-2 

k=0 k=0 ' k=0 
k even k odd k even 

n n n 

~a 2 X * +b X Sn,k~C Y,Sn-l,k-2 
k=0 k=0 k=0 

k even k odd k even 

We simplify these sums using the Fibonacci identity 

Fn+\ ~ 2 J j I 

for n even, 

for n odd. 

(7) 

(8) 

Substituting these into equations (6)-(8) gives the results. D 

5. HIGHER-ORDER GOLDEN RATIOS 

The applications of the golden ratio to geometry and the Fibonacci numbers are well docu-
mented ([5], [15]). Since the root g2 has the value of the golden ratio, it is natural to ask if the 
other maximal roots {gn} have similar properties. It appears that this is the case. In the four 
examples that follow, we examine how the {gn} can be considered generalizations of the golden 
ratio to higher dimensions. 
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5.1 Geometric Properties 
Consider a square of side x (labeled "square A" in the diagram below), containing a unit 

square (square B). Extending the sides of the unit square forms a third square of side x - 1 
(square C). 

FIGURE 3 

Note that the ratio of (the side of A) to (the side of B) is equal to the ratio of (the side of B) to 
(the side of C) only if x is the golden ratio, g2. That is x 11 = 1 / (x -1). Note also, however, that 
the ratio of (the area of A) to (the side of B) is equal to the ratio of (the area of B) to (the side of 
C) only if x is g3. That is x211 = l2 (x -1). 

A golden cuboid is a solid of unit volume having sides in the ratio of g2 :1:1 / g2 (Huntley 
[15]). It has the property that removing a slice off the top of dimensions 1/ g2 : 1 : II g2 leaves a 
smaller solid with the ratio of the volumes being g2. We can analogously define a "platinum 
cuboid" of dimensions g3:!:!/ g3. If instead of removing a slab of dimensions II g3 :l:l/g3, we 
add such a slab, the resulting ratio of volumes is g3 (see Fig. 4). 

FIGURE 4 

5.2 Continued Fractions and Continued Radicals 

By definition, the {gn} are precisely those numbers that can be expressed by multidimensional 
continued fractions using all l's. This is perhaps the strongest argument to consider these 
numbers as higher-order golden ratios. 

It is perhaps worth noting, since 1993 is the 400th anniversary of Vieta's continued radical 
expression for % (Smith [20]), that continued radicals were used extensively in past centuries 
(Cohen [6] and Shannon [19]). The golden ratio can also be expressed by continued radicals. 
That is, 
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Similarly, g3 can be expressed with continued cube roots as 

&=>/i+(i+o+o+-)!)¥=>/i+(ft)'-
5.3 Rational Sequences 

The golden ratio, g2, is the limit of consecutive Fibonacci numbers. This can be expressed as 

p, \P\ = ?i = 1, 
g2 = lim -*- where ^0t = pk_x, 

*—fc [pk=Pk-l+qk-1-
Similarly, there is a rational sequence that converges to g3 defined by 

g3 = lim — where \ 
k^qk 

A = ?i = 1, 

1k = Pk-\+<ll-\ -ql 

Instead of the Fibonacci numbers, the convergents are 1/1, 3/2, 19/13, 797/550, ..., etc. In fact, a 
rational sequence can be constructed for each gn using the Fibonacci Polynomials Fn_x(x) and 
Fn_2(x). Specifically, for a sequence that converges to gn+1, begin with pl=ql = l, then continue 

P^ <FAi)^M) l+^M 

5.4 Generated Integer Sequences 

The Fibonacci and Lucas numbers are integer sequences generated by the golden ratio and its 
real conjugate using the Binet forms. In a similar way, we can define the sequence g3 by 

g3
+h3+h3 ' 

where h$ and h$ are the complex conjugate roots of G3. It can be shown that {un} is the integer 
sequence defined by the recursive formula un+3 - un+2 +un with initial values u0 = 39ux = 1, and 
u2 = 1. This gives a "delayed" Fibonacci-type sequence (3), 1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 
98, ..., etc. See [8] for additional information on this. 
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