RECURSIONS AND PASCAL-TYPE TRIANGLES

Rudolph M. Najar

Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108 (Submitted October 1991)

INTRODUCTION

Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to study a generalization of the array in [8]. In section 1, recursion formulas for the row and diagonal row sums are derived. In section 2, the determinants of a set of matrices associated with the triangular array of [8] are calculated.

1. GENERAL PROPERTIES OF THE ARRAYS

Consider a family of triangular arrays of numbers, indexed by the reals. For each $a \in \mathbb{R}$, the array is a doubly infinite set of numbers d(a; n, k); $n, k \in \mathbb{Z}$, such that:

- **a**. d(a; n, k) = 0, n < 0;
- **b**. d(a; n, k) = 0, k < 0 or k > n;
- c. d(a; 0, 0) = a,
- **d**. d(a; 1, 0) = d(a; 1, 1) = 1; and
- e. $d(a; n, k) = d(a; n-2, k-1) + d(a; n-1, k-1) + d(a; n-1, k), n \ge 2$.

The triangular array studied by Wong & Maddocks [8] corresponds to the case a = 1. Their general term $M_{k,r}$ corresponds to the term d(1; k+r, r) here. Tables 1, 2, and 3 contain the initial rows for the arrays d(1; n, k), d(0; n, k), and the general array d(a; n, k), respectively. As mentioned above, Table 1 appears in [8]. It also appears in [1].

An examination of these arrays reveals that, for $n \ge 2$,

d(a; n, k) = d(0; n, k) + a[d(1; n-2, k-2)].

290

[NOV.

Thus, calculations for any array d(a; n, k) reduce to calculations on d(0; n, k) and d(1; n, k). Definition 1: For fixed n, we call the sums

(1)
$$D(a; n) = \sum_{k=0}^{n} d(a; n, k);$$
 and
(2) $D^{*}(a; n) = \sum_{k=0}^{n} (-1)^{k} d(a; n, k)$

the row sums and the alternating row sums, respectively, of the array d(a; n, k).

It is immediate that, for $n \ge 2$,

a. D(a; n) = D(0; n) + a[D(1; n-2)]; and

b.
$$D^*(a; n) = D^*(0; n) + (-a)[D^*(1; n-2)].$$

Theorem 1: The sequences $\{D(1, n)\}$ and $\{D(0, n)\}$ satisfy:

(a)
$$D(1; 0) = 1; D(1; 1) = 2;$$
 and, for $n \ge 2, D(1; n) = 2D(1; n-1) + D(1; n-2);$

(b)
$$D^*(1; n) = \begin{cases} 0, & n \text{ odd, } n > 0, \\ (-1)^m, & n = 2m, m \ge 0; \end{cases}$$

(c)
$$D(0; 0) = 0; D(0; 1) = 2;$$
 and, for $n \ge 1, D(0; n) = 2D(0; n-1) + D(0; n-2);$ and

(d) For $n \ge 0$, $D^*(0; n) = 0$.

Proof of (a): The proof is by induction. Obviously,

$$D(1; 0) = 1; D(1; 1) = 2;$$
 and $D(1; 2) = 2D(1; 1) + D(1; 0).$

Assume the proposition is true for $2 \le n < m$. For n = m,

$$D(1; m) = \sum_{k=0}^{m} d(1; m, k) = \sum_{k=0}^{m} \{ d(1; m-2, k-1) + d(1; m-1, k-1) + d(1; m-1, k) \}$$
$$= \sum_{k=0}^{m} d(1; m-2, k-1) + \sum_{k=0}^{m} \{ d(1; m-1, k-1) + d(1; m-1, k) \}.$$

The first summation is D(1; m-2). The second summation is

$$\{ d(1; m-1, -1) + d(1; m-1, 0) \} + \{ d(1; m-1, 0) + d(1; m-1, 1) \}$$

+ $\{ d(1; m-1, 1) + d(1; m-1, 2) \} + \dots + \{ d(1; m-1, m-2) \}$
+ $d(1; m-1, m-1) \} + \{ d(1; m-1, m-1) + d(1; m-1, m) \}.$

Recall that d(1; m-1, -1) = d(1; m-1, m) = 0. Regrouping, the summation becomes:

$$2d(1; m-1, 0) + 2d(1; m-1, 1) + \dots + 2d(1; m-1, m-2) + 2d(1; m-1, m-1) = 2D(1; m-1).$$

Thus, D(1; m) = 2D(1; m-1) + D(1; m-2).

1993]

RECURSIONS AND PASCAL-TYPE TRIANGLES

The proofs of (b), (c), and (d) are similar. \Box

The recursions (a) and (c) identify the sequences $\{D(1; n)\}$ and $\{D(0; n)\}$ as Pell sequences [2]. The initial terms of the D(1; n) sequences are: 1, 2, 5, 12, 29, 70, 169, This sequence is number 552 in Sloane [6]. The D(0; n) sequence starts: 0, 2, 4, 10, 24, 58, The terms are all even. Dividing by 2 yields: 0, 1, 2, 5, 12, 29, 70, 169, ..., which is again Sloane's sequence 552.

Given Definition 1 and Theorem 1, a simple calculation yields

Corollary 1: The sequences $\{D(a; n)\}$ and $\{D^*(a; n)\}$ satisfy:

- (a) $D(a; 0) = a; D(a; 1) = 2; D(a; n) = 2D(a; n-1) + D(a; n-2), n \ge 2.$
- **(b)** $D^*(a; n) = \begin{cases} 0, & n \text{ odd,} \\ a(-1)^m, & n = 2m. \end{cases}$

Definition 2: Sums of the form

- (1) $\partial(a; n) = d(a; n, 0) + d(a; n-1, 1) + d(a; n-2, 2) + \cdots$, and
- (2) $\partial^*(a; n) = d(a; n, 0) d(a; n-1, 1) + d(a; n-2, 2) d(a; n-3, 3) + \cdots$, will be called diagonal sums and alternating diagonal sums, respectively, for the array d(a; n, k).

Theorem 2: The diagonal sums $\partial(1; n)$ and $\partial(0; n)$ satisfy:

- (a) $\partial(1; 0) = \partial(1; 1) = 1; \ \partial(1; 2) = 2;$ and $\partial(1; n) = \partial(1; n-1) + \partial(1; n-2) + \partial(1; n-3); \ n \ge 3;$
- (b) $\partial(0; 0) = 0; \ \partial(0; 1) = 1; \ \partial(0; 2) = 2;$ and $\partial(0; n) = \partial(0; n-1) + \partial(0; n-2) + \partial(0; n-3); \ n \ge 3.$

Proof: (a) Proved in [1] and [8]; (b) Direct calculation. \Box

The initial terms of the $\partial(1; n)$ sequence are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called the *Tribonacci sequence*. The terms of $\partial(0, n)$ are: 0, 1, 2, 3, 6, 11, 20, 37, ...; Sloane's sequence 296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the form $s(n) = s(n-1) + s(n-2) + s(n-3), n \ge 3$. The difference between the two sequences requires from different initial terms. Sequences with a three-term recurrence have been studied previously, e.g., [4], [7]. The recursion relations for both $\partial(0, n)$ and $\partial(1; n)$ can be written in matrix form [7].

Theorem 3: The alternating diagonal sums $\partial^*(1; n)$ and $\partial^*(0; n)$ satisfy the relations:

(a)
$$\partial^*(1; 0) = \partial^*(1; 1) = 1; \ \partial^*(1; 2) = 0; \text{ and}$$

 $\partial^*(1; n) = \partial^*(1; n-1) - \partial^*(1; n-2) - \partial^*(1; n-3), \ n \ge 3.$
(b) $\partial^*(0; 0) = 0; \ \partial^*(0; 1) = 1; \ \partial^*(0; 2) = 0; \text{ and}$
 $\partial^*(0; n) = \partial^*(0; n-1) - \partial^*(0; n-2) - \partial^*(0; n-3), \ n \ge 3.$

[NOV.

Corollary 2: The diagonal sums $\partial(a; n, k)$ satisfy

- (a) $\partial(a; 0) = a; \ \partial(a; 1) = 1; \ \partial(a; 2) = 2;$
- (b) $\partial(a; n) = \partial(a; n-1) + \partial(a; n-2) + \partial(a; n-3); n \ge 3.$

The alternating diagonal sums $\partial^*(a; n)$ satisfy

- (c) $\partial^*(a; 0) = a; \ \partial^*(a; 1) = 1; \ \partial^*(a; 2) = 0;$
- (d) $\partial^*(a; n) = \partial^*(a; n-1) \partial^*(a; n-2) \partial^*(a; n-3); n \ge 3.$

2. THE ASSOCIATED MATRICES

Rotate the array d(1; n, k) counterclockwise so that the diagonals become rows and columns to produce the following infinite matrix:

M =	[1	1	1	1	1	…]
	1	3	5	7	9	
	1	5	13	25	1 9 41 129 321	
	1	7	25	63	129	
	1	9	41	129	321	
	[:	:	:	:	:]

The recursion relations for the triangle translate to the following relations for the terms $m_{i,j}$ of the matrix:

a. $m_{1, j} = m_{i, 1} = 1$, for all *i*, *j*; and

b.
$$m_{i,j} = m_{i,j-1} + m_{i-1,j-1} + m_{i-1,j}, i > 1, j > 1.$$

Let M_n be the $(n \times n)$ -submatrix whose rows and columns are the first *n* rows and *n* columns of **M**, and $|M_n|$ the corresponding determinant.

Theorem 4: For $n \ge 1$, $|M_n| = 2^{n(n-1)/2}$.

Proof: By induction. For n = 1, the result is immediate.

For k > 1, the matrix can be changed by elementary row and column operations so that, in block form,

$$M_k = \begin{bmatrix} 1 & 0 \\ 0 & 2M_{k-1} \end{bmatrix}$$

The rest follows. \Box

ACKNOWLEDGMENT

The author wishes to acknowledge the referees comments which substantially improved the paper and provided references the author was unfamiliar with.

RECURSIONS AND PASCAL-TYPE TRIANGLES

REFERENCES

- 1. K. Alladi & V. E. Hoggatt, Jr. "On Tribonacci Numbers and Related Functions." *Fibonacci Quarterly* **15.1** (1977):42-45.
- 2. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." *Fibonacci Quarterly* **13.4** (1975):345-49.
- 3. M. Boisen, Jr. "Overlays of Pascal's Triangle." Fibonacci Quarterly 7.2 (1969):131-38.
- 4. M. Feinberg. "Fibonacci-Tribonacci." Fibonacci Quarterly 1.3 (1963):71-74.
- 5. H. W. Gould. "A Variant of Pascal's Triangle." Fibonacci Quarterly 3.4 (1965):257-71.
- 6. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
- 7. M. E. Waddill & L. Sacks. "Another Generalized Fibonacci Sequence." *Fibonacci Quar*terly 5.3 (1967):209-22.
- 8. C. K. Wong & T. W. Maddocks. "A Generalized Pascal's Triangle." *Fibonacci Quarterly* **13.2** (1975):134-36.

AMS numbers: 11B83; 11B39

 $\diamond \diamond \diamond$

Dear Editor:

May 10, 1993

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs" by A. G. Kyriakoussis, which appeared in *The Fibonacci Quarterly* **31.1** (1993):44-52. I wish to mention that Kyriakoussis' "EGSP" ("extended generalized Stirling pair") is actually a particular case included in the second class of extended "GSN" pairs considered in my paper "Theory and Application of Generalized Stirling Number Pairs," *J. Math. Res. and Exposition* **9** (1989):211-20. His first characterization theorem for "EGSP" is a special case of my Theorem 6 (*loc. cit.*). In fact, a basic result corresponding with his case appeared much earlier in the paper by J. L. Fields & M. E. H. Ismail, entitled "Polynomial Expansions," *Math. Comp.* **29** (1975):894-902.

Thank you for your attention.

Yours sincerely,

L. C. Hsu

Department of Applied Mathematics University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2