RECURSIONS AND PASCAL-TYPE TRIANGLES

Rudolph M. Najar
Department of Mathematics, California State University, Fresno, Fresno, CA 93740-0108
(Submitted October 1991)

INTRODUCTION

Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to study a generalization of the array in [8]. In section 1, recursion formulas for the row and diagonal row sums are derived. In section 2, the determinants of a set of matrices associated with the triangular array of [8] are calculated.

1. GENERAL PROPERTIES OF THE ARRAYS

Consider a family of triangular arrays of numbers, indexed by the reals. For each $a \in \mathbf{R}$, the array is a doubly infinite set of numbers $d(a ; n, k) ; n, k \in \mathbf{Z}$, such that:
a. $\quad d(a ; n, k)=0, n<0$;
b. $\quad d(a ; n, k)=0, k<0$ or $k>n$;
c. $d(a ; 0,0)=a$,
d. $\quad d(a ; 1,0)=d(a ; 1,1)=1$; and
e. $\quad d(a ; n, k)=d(a ; n-2, k-1)+d(a ; n-1, k-1)+d(a ; n-1, k), n \geq 2$.

The triangular array studied by Wong $\&$ Maddocks [8] corresponds to the case $a=1$. Their general term $M_{k, r}$ corresponds to the term $d(1 ; k+r, r)$ here. Tables 1,2 , and 3 contain the initial rows for the arrays $d(1 ; n, k), d(0 ; n, k)$, and the general array $d(a ; n, k)$, respectively. As mentioned above, Table 1 appears in [8]. It also appears in [1].

TABLE 1. $d(1 ; n, k)$

TABLE 2. $d(0 ; n, k)$

TABLE 3. $d(a ; n, k)$

An examination of these arrays reveals that, for $n \geq 2$,

$$
d(a ; n, k)=d(0 ; n, k)+a[d(1 ; n-2, k-2)]
$$

Thus, calculations for any array $d(a ; n, k)$ reduce to calculations on $d(0 ; n, k)$ and $d(1 ; n, k)$.
Definition 1: For fixed n, we call the sums
(1) $D(a ; n)=\sum_{k=0}^{n} d(a ; n, k)$; and
(2) $D^{*}(a ; n)=\sum_{k=0}^{n}(-1)^{k} d(a ; n, k)$
the row sums and the alternating row sums, respectively, of the array $d(a ; n, k)$.
It is immediate that, for $n \geq 2$,
a. $D(a ; n)=D(0 ; n)+a[D(1 ; n-2)]$; and
b. $\quad D^{*}(a ; n)=D^{*}(0 ; n)+(-a)\left[D^{*}(1 ; n-2)\right]$.

Theorem 1: The sequences $\{D(1 ; n)\}$ and $\{D(0 ; n)\}$ satisfy:
(a) $D(1 ; 0)=1 ; D(1 ; 1)=2$; and, for $n \geq 2, D(1 ; n)=2 D(1 ; n-1)+D(1 ; n-2)$;
(b) $D^{*}(1 ; n)= \begin{cases}0, & n \text { odd, } n>0, \\ (-1)^{m}, & n=2 m, m \geq 0 ;\end{cases}$
(c) $D(0 ; 0)=0 ; D(0 ; 1)=2$; and, for $n \geq 1, D(0 ; n)=2 D(0 ; n-1)+D(0 ; n-2)$; and
(d) For $n \geq 0, D^{*}(0 ; n)=0$.

Proof of (a): The proof is by induction. Obviously,

$$
D(1 ; 0)=1 ; D(1 ; 1)=2 ; \text { and } D(1 ; 2)=2 D(1 ; 1)+D(1 ; 0) .
$$

Assume the proposition is true for $2 \leq n<m$. For $n=m$,

$$
\begin{aligned}
D(1 ; m) & =\sum_{k=0}^{m} d(1 ; m, k)=\sum_{k=0}^{m}\{d(1 ; m-2, k-1)+d(1 ; m-1, k-1)+d(1 ; m-1, k)\} \\
& =\sum_{k=0}^{m} d(1 ; m-2, k-1)+\sum_{k=0}^{m}\{d(1 ; m-1, k-1)+d(1 ; m-1, k)\}
\end{aligned}
$$

The first summation is $D(1 ; m-2)$. The second summation is

$$
\begin{aligned}
&\{d(1 ; m-1,-1)+d(1 ; m-1,0)\}+\{d(1 ; m-1,0)+d(1 ; m-1,1)\} \\
&+\{d(1 ; m-1,1)+d(1 ; m-1,2)\}+\cdots+\{d(1 ; m-1, m-2) \\
&+d(1 ; m-1, m-1)\}+\{d(1 ; m-1, m-1)+d(1 ; m-1, m)\}
\end{aligned}
$$

Recall that $d(1 ; m-1,-1)=d(1 ; m-1, m)=0$. Regrouping, the summation becomes:

$$
\begin{aligned}
2 d(1 ; m-1,0) & +2 d(1 ; m-1,1)+\cdots+2 d(1 ; m-1, m-2) \\
& +2 d(1 ; m-1, m-1)=2 D(1 ; m-1)
\end{aligned}
$$

Thus, $D(1 ; m)=2 D(1 ; m-1)+D(1 ; m-2)$.

The proofs of (b), (c), and (d) are similar.
The recursions (a) and (c) identify the sequences $\{D(1 ; n)\}$ and $\{D(0 ; n)\}$ as Pell sequences [2]. The initial terms of the $D(1 ; n)$ sequences are: $1,2,5,12,29,70,169, \ldots$. This sequence is number 552 in Sloane [6]. The $D(0 ; n)$ sequence starts: $0,2,4,10,24,58, \ldots$. The terms are all even. Dividing by 2 yields: $0,1,2,5,12,29,70,169, \ldots$, which is again Sloane's sequence 552 .

Given Definition 1 and Theorem 1, a simple calculation yields
Corollary 1: The sequences $\{D(a ; n)\}$ and $\left\{D^{*}(a ; n)\right\}$ satisfy:
(a) $D(a ; 0)=a ; D(a ; 1)=2 ; D(a ; n)=2 D(a ; n-1)+D(a ; n-2), n \geq 2$.
(b) $D^{*}(a ; n)= \begin{cases}0, & n \text { odd }, \\ a(-1)^{m}, & n=2 m .\end{cases}$

Definition 2: Sums of the form
(1) $\partial(a ; n)=d(a ; n, 0)+d(a ; n-1,1)+d(a ; n-2,2)+\cdots$, and
(2) $\partial^{*}(a ; n)=d(a ; n, 0)-d(a ; n-1,1)+d(a ; n-2,2)-d(a ; n-3,3)+\cdots$, will be called diagonal sums and alternating diagonal sums, respectively, for the array $d(a ; n, k)$.

Theorem 2: The diagonal sums $\partial(1 ; n)$ and $\partial(0 ; n)$ satisfy:
(a) $\partial(1 ; 0)=\partial(1 ; 1)=1 ; \partial(1 ; 2)=2$;
and $\partial(1 ; n)=\partial(1 ; n-1)+\partial(1 ; n-2)+\partial(1 ; n-3) ; n \geq 3 ;$
(b) $\partial(0 ; 0)=0 ; \partial(0 ; 1)=1 ; \partial(0 ; 2)=2$;
and $\partial(0 ; n)=\partial(0 ; n-1)+\partial(0 ; n-2)+\partial(0 ; n-3) ; n \geq 3$.
Proof: (a) Proved in [1] and [8]; (b) Direct calculation.
The initial terms of the $\partial(1 ; n)$ sequence are: $1,1,2,4,7,13,24,44,81,149,274,504, \ldots$. This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called the Tribonacci sequence. The terms of $\partial(0 ; n)$ are: $0,1,2,3,6,11,20,37, \ldots$; Sloane's sequence 296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the form $s(n)=s(n-1)+s(n-2)+s(n-3), n \geq 3$. The difference between the two sequences requits from different initial terms. Sequences with a three-term recurrence have been studied previously, e.g., [4], [7]. The recursion relations for both $\partial(0 ; n)$ and $\partial(1 ; n)$ can be written in matrix form [7].

Theorem 3: The alternating diagonal sums $\partial^{*}(1 ; n)$ and $\partial^{*}(0 ; n)$ satisfy the relations:
(a) $\partial^{*}(1 ; 0)=\partial^{*}(1 ; 1)=1 ; \partial^{*}(1 ; 2)=0$; and $\partial^{*}(1 ; n)=\partial^{*}(1 ; n-1)-\partial^{*}(1 ; n-2)-\partial^{*}(1 ; n-3), n \geq 3$.
(b) $\partial^{*}(0 ; 0)=0 ; \partial^{*}(0 ; 1)=1 ; \partial^{*}(0 ; 2)=0$; and $\partial^{*}(0 ; n)=\partial^{*}(0 ; n-1)-\partial^{*}(0 ; n-2)-\partial^{*}(0 ; n-3), n \geq 3$.

Corollary 2: The diagonal sums $\partial(a ; n, k)$ satisfy
(a) $\partial(a ; 0)=a ; \partial(a ; 1)=1 ; \partial(a ; 2)=2$;
(b) $\partial(a ; n)=\partial(a ; n-1)+\partial(a ; n-2)+\partial(a ; n-3) ; n \geq 3$.

The alternating diagonal sums $\partial^{*}(a ; n)$ satisfy
(c) $\partial^{*}(a ; 0)=a ; \partial^{*}(a ; 1)=1 ; \partial^{*}(a ; 2)=0$;
(d) $\partial^{*}(a ; n)=\partial^{*}(a ; n-1)-\partial^{*}(a ; n-2)-\partial^{*}(a ; n-3) ; n \geq 3$.

2. THE ASSOCIATED MATRICES

Rotate the array $d(1 ; n, k)$ counterclockwise so that the diagonals become rows and columns to produce the following infinite matrix:

$$
\mathbf{M}=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 3 & 5 & 7 & 9 & \ldots \\
1 & 5 & 13 & 25 & 41 & \ldots \\
1 & 7 & 25 & 63 & 129 & \ldots \\
1 & 9 & 41 & 129 & 321 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right]
$$

The recursion relations for the triangle translate to the following relations for the terms $m_{i, j}$ of the matrix:
a. $m_{1, j}=m_{i, 1}=1$, for all i, j; and
b. $m_{i, j}=m_{i, j-1}+m_{i-1, j-1}+m_{i-1, j}, i>1, j>1$.

Let M_{n} be the $(n \times n)$-submatrix whose rows and columns are the first n rows and n columns of \mathbf{M}, and $\left|M_{n}\right|$ the corresponding determinant.

Theorem 4: For $n \geq 1,\left|M_{n}\right|=2^{n(n-1) / 2}$.
Proof: By induction. For $n=1$, the result is immediate.
For $k>1$, the matrix can be changed by elementary row and column operations so that, in block form,

$$
M_{k}=\left[\begin{array}{c|c}
1 & 0 \\
\hline 0 & 2 M_{k-1}
\end{array}\right]
$$

The rest follows.

ACKNOWLEDGMENT

The author wishes to acknowledge the referees comments which substantially improved the paper and provided references the author was unfamiliar with.

REFERENCES

1. K. Alladi \& V. E. Hoggatt, Jr. "On Tribonacci Numbers and Related Functions." Fibonacci Quarterly 15.1 (1977):42-45.
2. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fibonacci Quarterly 13.4 (1975):345-49.
3. M. Boisen, Jr. "Overlays of Pascal's Triangle." Fibonacci Quarterly 7.2 (1969):131-38.
4. M. Feinberg. "Fibonacci-Tribonacci." Fibonacci Quarterly 1.3 (1963):71-74.
5. H. W. Gould. "A Variant of Pascal's Triangle." Fibonacci Quarterly 3.4 (1965):257-71.
6. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
7. M. E. Waddill \& L. Sacks. "Another Generalized Fibonacci Sequence." Fibonacci Quarterly 5.3 (1967):209-22.
8. C. K. Wong \& T. W. Maddocks. "A Generalized Pascal's Triangle." Fibonacci Quarterly 13.2 (1975):134-36.

AMS numbers: 11B83; 11B39

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs" by A. G. Kyriakoussis, which appeared in The Fibonacci Quarterly 31.1 (1993):44-52. I wish to mention that Kyriakoussis' "EGSP" ("extended generalized Stirling pair") is actually a particular case included in the second class of extended "GSN" pairs considered in my paper "Theory and Application of Generalized Stirling Number Pairs," J. Math. Res. and Exposition 9 (1989):211-20. His first characterization theorem for "EGSP" is a special case of my Theorem 6 (loc. cit.). In fact, a basic result corresponding with his case appeared much earlier in the paper by J. L. Fields \& M. E. H. Ismail, entitled "Polynomial Expansions," Math. Comp. 29 (1975):894-902.
Thank you for your attention.
Yours sincerely,
L. C. Hsu

Department of Applied Mathematics
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

