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INTRODUCTION 
Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in 

the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to 
study a generalization of the array in [8]. In section 1, recursion formulas for the row and diag-
onal row sums are derived. In section 2, the determinants of a set of matrices associated with the 
triangular array of [8] are calculated. 

1. GENERAL PROPERTIES OF THE ARRAYS 

Consider a family of triangular arrays of numbers, indexed by the reals. For each a G R , the 
array is a doubly infinite set of numbers d(a; n, k); n, k e Z , such that: 

a. d(a;n,k) = 0, n<0; 
b. d(a; n,k) = 0, k < 0 or k > n; 
c. d(a; 0,0) = a, 
d. d{a\ 1, 0) = d(a; 1,1) = 1; and 
e. d(a;n, k) = d(a;n-2,k-l) + d(a;n-l,k-l) + d(a;n-l, £), n>2. 

The triangular array studied by Wong & Maddocks [8] corresponds to the case a = 1. Their gen-
eral term Mk%r corresponds to the term d(l;k+r,r) here. Tables 1, 2, and 3 contain the initial 
rows for the arrays d(l; n, k), d(0; n, k), and the general array d(a; n, &), respectively. As men-
tioned above, Table 1 appears in [8]. It also appears in [1]. 

TABLE 1. d(l;n9k) 
l 

1 1 
1 3 3 

1 5 5 1 
7 13 7 1 

TABLE 2. d(0;n,k) 
0 

i i 
1 2 1 

1 4 4 1 
1 6 10 6 1 

TABLES. d(a;n,k) 

a 
1 1 

1 2+a 1 
1 4+a 4+a 1 

1 6+a 10+3a 6+a 1 
1 8+a 20+5a 20+5a 8+a 1 

An examination of these arrays reveals that, for n > 2, 
d(a; n, k) = d(0; n, k) + a[d(l; n-2,k- 2)]. 
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Thus, calculations for any array d(a\ n, k) reduce to calculations on d(0; n, k) and d{\\ n, k). 

Definition 1: For fixed n, we call the sums 

(1) D(a; n) - ^d(a; n, k); and 
k=0 

(2) D*(a;n) = fj(-l)kd(a;n,k) 

the row sums and the alternating row sums, respectively, of the array d(a; n,k). 
It is immediate that, for n > 2, 
a. D(a; n) = D(0; n) + a[D(l; n - 2)]; and 
k D*(a; n) = D*(0; n) + (-a)[Z>*(l; n - 2)]. 

Theorem 1: The sequences {D(l; w)} and {D(0; n)} satisfy: 

(a) Z>(1; 0) = 1; D(l; 1) = 2; and, forw^2,Z)(l;w) = 2Z)(l;7i-l) + £)(l;w-2); 

f0, w odd, n > 0, 
(6j ,D*(1;?0H 

[ ( - iy \ ^ = 2m,w>0; 
(c> £>(0; 0) = 0; Z>(0; 1) = 2; and, for w > 1, £>(0; w) = 2D(0; TI -1) + Z>(0; w - 2); and 

frfj Forw£0,£>*(0;w) = 0. 

Proof of (a): The proof is by induction. Obviously, 

D(l; 0) = 1; D(l; 1) = 2; and Z>(1; 2) = 2D(1; 1) + Z>(1; 0). 
Assume the proposition is true for 2 < n < m. For n = m, 

m m 

D(l;m) = Xtf(l;wi,Jfc) = £ { r f ( l ; ^ ^ 
A;=0 fc=0 

= J r f ( l ;w-2 , J I : - l ) + ] [ { ( / ( l ; w - l , i - l ) + r f ( l ; » i - U ) } . 

The first summation is D(l; m-2). The second summation is 

{d(l;m-\,-l) + d(l;m-l,Q)} + {d(l;m-l,0) + d(l;m-l,l)} 
+ {d(l;m-l,l) + d(l;m-l,2)} + -- + {d(l;m-l,m-2) 
+ d(l;m-l,m-l)} + {d(l;m-l,m-l) + d(l;m-l,m)}. 

Recall that d(l; m - 1 , -1) = J( l ; w - 1 , m) = 0. Regrouping, the summation becomes: 

2£/(l;/if-l,0) + 2£/(l;wi-l,l) + --+2rf(l;wi-l,/ii-2) 
+ 2d(l;m-l,m-l) = 2D(l;m-l). 

Thus, D(l;m) = 2D(l;m-l)+Z)(l ;w-2). 
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The proofs of (b), (c), and (d) are similar. D 
The recursions (a) and (c) identify the sequences {D(\\ri)} and {D(0,n)} as Pell sequences 

[2]. The initial terms of the Z)(l; n) sequences are: 1, 2, 5, 12, 29, 70, 169, ... . This sequence is 
number 552 in Sloane [6]. The D(0; n) sequence starts: 0, 2, 4, 10, 24, 58, ... . The terms are all 
even. Dividing by 2 yields: 0, 1, 2, 5, 12, 29, 70, 169, ..., which is again Sloane's sequence 552. 

Given Definition 1 and Theorem 1, a simple calculation yields 

Corollary 1: The sequences {D(a; n)} and {D*(a; n)} satisfy: 
(a) D(a; 0) = a; D(a; 1) = 2; D(a\ n) = 2D(a; n -1) + D(a; n - 2), n > 2. 

/h\ r w \ f°> ft odd, 
-i) , w = 2/w. 

Definition 2: Sums of the form 

flj d(a;n) = d(a;n,0) + d(a;n-l,l) + d(a;n-2,2) + --, and 

(2) 5* (a;«) = J (a ;« , 0) - d(a; n -1,1) + rf(a; w - 2,2) - t/(a;« - 3,3) + • • •, will be called 
diagonal sums and alternating diagonal sums, respectively, for the array d(a\ n,k). 

Theorem 2: The diagonal sums <9(1; n) and d(0; n) satisfy: 

(a) 3(l;0) = d(l;l) = l; <9(1; 2) = 2; 
and 5(1; w) = 5(1; w-1) + 5(1; w-2) +3(1;H-3); w>3; 

(h) 5(0;0) = 0; 5(0;1) = 1; 5(0; 2) = 2; 
and 5(0; w) = 5(0; n-1) + 5(0; w-2) + 5(0;/?-3); n > 3. 

Proof: (a) Proved in [1] and [8]; (b) Direct calculation. D 

The initial terms of the 5(1; n) sequence are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, ... . 
This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called 
the Tribonacci sequence. The terms of 5(0; n) are: 0, 1, 2, 3, 6, 11, 20, 37, ...; Sloane's sequence 
296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the 
form s(n) = s(n -1) + s(n - 2) + s(n - 3), n > 3. The difference between the two sequences reqults 
from different initial terms. Sequences with a three-term recurrence have been studied previously, 
e-g-> [4], [7]. The recursion relations for both 5(0; n) and 5(1; n) can be written in matrix form 
[7]. 

Theorem 3: The alternating diagonal sums 5*(1; n) and 5*(0; n) satisfy the relations: 

(a) 3*(1;0) = 5*(1;1) = 1; 5*(1; 2) = 0; and 
5*(1;n) = 5*(1;w-l)-5*(l;«-2)-5*(l;rc-3), w£3. 

(b) 5*(0;0) = 0; 5*(0;1) = 1; 5*(0;2) = 0; and 
5*(0;w) = 5*(a,Ai-l)-5*(0;w-2)-5*(0;/i-3), w>3.-. 
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Corollary 2: The diagonal sums d(a; n9 k) satisfy 
(a) d(a;0) = a; 3(a;l) = l; d(a;2) = 2; 
(b) d(a;n) = d(a',n-l) + d(a;n-2) + d(a;n-3); n>3. 

The alternating diagonal sums ct(a; n) satisfy 

(c) 7(a ;0) = a; ^ ( a ; l ) = l; d*(a;2) = 0; 
(d) cf(a;n) = Gt(a;n-l)-d*(a;n--2)~d*(a;n-3); n>3. 

2. THE ASSOCIATED MATMCES 
Rotate the array d(l; n, k) counterclockwise so that the diagonals become rows and columns 

to produce the following infinite matrix: 

' 1 1 1 1 1 
1 3 5 7 9 

,1 5 13 25 41 
M = 

1 7 25 63 129 
1 9 41 129 321 

The recursion relations for the triangle translate to the following relations for the terms mUj of the 
matrix: 

a. mXj = miX -1, for all z", j ; and 
b. niij = w^ +mt_lJ_l + my_1J? / > 1, j > 1. 

Let Mn be the (w x /?)-submatrix whose rows and columns are the first n rows and n columns of 
M, and \Mn\ the corresponding determinant. 

Theorem 4: For/ i>l , \Mn\=2n(n-l)/\ 

Proof: By induction. For n = 1, the result is immediate. 
For k > 1, the matrix can be changed by elementary row and column operations so that, in 

block form, 

Mk = 
2Mt k-i 

The rest follows. D 
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May 10, 1993 
Dear Editor: 

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs" 
by A. G. Kyriakoussis, which appeared in The Fibonacci Quarterly 31.1 (1993):44-52. I wish to 
mention that Kyriakoussis' ^'EGSP" ("extended generalized Stirling pair") is actually a particular case 
included in the second class of extended "GSN" pairs considered in my paper "Theory and Application 
of Generalized Stirling Number Pairs," J. Math. Res. and Exposition 9 (1989):211-20. His first char-
acterization theorem for "EGSP" is a special case of my Theorem 6 (loc. cit.). In fact, a basic result 
corresponding with his case appeared much earlier in the paper by J. L. Fields & M. E. H. Ismail, 
entitled "Polynomial Expansions," Math. Comp. 29 (1975):894-902. 

Thank you for your attention. 

Yours sincerely, 

L. C. Hsu 

Department of Applied Mathematics 
University of Manitoba 
Winnipeg, Manitoba, Canada R3T 2N2 
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