REDUCED ϕ-PARTITIONS OF POSITIVE INTEGERS*

Jun Wang
Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P.R. China
(Submitted January 1992)

1. INTRODUCTION

As a generalization of the equation $\phi(x)+\phi(k)=\phi(x+k), \phi$-partitions and reduced ϕ partitions and reduced ϕ-partitions of positive integers were considered by Patricia Jones [1]. That is, $n=a_{1}+\cdots+a_{i}$ is a ϕ-partition if $i>1$ and $\phi(n)=\phi\left(a_{1}\right)+\cdots+\phi\left(a_{i}\right)$, where ϕ is Euler's totient function. Furthermore, a ϕ-partition is reduced if each of its summands is simple, where a simple number is known as 1 or a product of the first primes.

In [1] the author conjectured that every nonsimple number has exactly one reduced ϕ partition. Here, we show that the conjecture is false. In fact, we will see that the positive integers satisfying the conjecture are quite rare. The main purpose of this paper is to give a complete characterization of positive integers that have exactly one reduced ϕ-partition.

Throughout the paper, let p and q denote distinct primes, especially, p_{i} denote the $i^{\text {th }}$ prime, and $A_{0}=1, A_{i}=\Pi_{p \leq p_{i}} p$ be the $i^{\text {th }}$ simple number.

It is shown in [1] that every simple number has no ϕ-partitions and every nonsimple number has a ϕ-partition as follows:
(I) $n=\underbrace{p^{\alpha-1} t+\cdots+p^{\alpha-1} t}_{p}$ if $n=p^{\alpha} t$ for $\alpha>1$ and $p \nmid t$;
(II) $n=\underbrace{j+\cdots+j}_{p-q}+q j$ if $n=p j$ where p and q do not divide j and $q<p$.

This gives algorithms from which we can obtain at least one reduced ϕ-partition of any nonsimple number.

A nonsimple number is called semisimple if it has exactly one reduced ϕ-partition.
Our main result is the following:
Theorem: Let n be nonsimple. Then n is semisimple if and only if
(i) n is a prime or $n=3^{2}$, or
(ii) $n=a q_{1} \cdots q_{k} A_{i}$ with $a\left(q_{1}-p_{i+1}\right) \cdots\left(q_{k}-p_{i+1}\right)<p_{i+1}$, where $i \geqslant 1, k \geq 0$, $q_{1}>q_{2}>\cdots>q_{k}>p_{i+1}$ are primes and a is a positive integer.
We will present the proof of the Theorem in Section 3.
It can be seen from the Theorem that $\left(p_{i+1}-1\right) A_{i}$ and $p_{i+2} A_{i}$ are semisimple. For $k \geq 2$, the smallest semisimple number is $2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 19 \times 23=19 \times 23 \times A_{6}$.

[^0]
REDUCED ϕ-PARTITIONS OF POSITIVE INTEGERS

2. LEMMAS

First, we state without proof a basic and simple lemma.
Lemma 1: Let n be semisimple and $n=a_{1}+\cdots+a_{i}$ be any of its ϕ-partitions. Then every a_{i} is simple or semisimple.

Lemma 2: Let n be odd. Then n is not semisimple except $n=p$ or 3^{2}.
Proof: Using the algorithms (I, II), we know that one of $p q$ and $p^{\alpha}\left(\alpha>1\right.$ and $\left.p^{\alpha}>3^{2}\right)$ equals n, or a summand of some ϕ-partition of n. We have the reduced ϕ-partitions of $p q$ and p^{α} as follows:

$$
\begin{aligned}
& p q=\underbrace{1+\cdots+1}_{(p-2)(q-2)-2}+\underbrace{2+\cdots+2}_{p+q-1}=\underbrace{1+\cdots+1}_{(p-2)(q-2)}+\underbrace{2+\cdots+2}_{p+q-5}+6, \\
& p^{\alpha}=\underbrace{1+\cdots+1}_{p^{\alpha-1}(p-2)}+\underbrace{2+\cdots 2}_{p^{\alpha-1}}=\underbrace{1+\cdots+1}_{p^{\alpha-1}(p-2)+2}+\underbrace{2+\cdots+2}_{p^{\alpha-1}-4}+6 .
\end{aligned}
$$

Now the result follows from Lemma 1.
Lemma 3: Suppose

$$
n=\underbrace{1+\cdots+1}_{x_{0}}+\underbrace{A_{1}+\cdots+A_{1}}_{x_{1}}+\cdots \underbrace{A_{i}+\cdots+A_{i}}_{x_{i}}
$$

is a ϕ-partition. Then n is not semisimple if $x_{j} \geq p_{j+1}+1$ for some $1 \leq j \leq i$.
Proof: It is sufficient to show that

$$
\left(p_{j+1}+1\right) A_{j}=\underbrace{A_{j}+\cdots+A_{j}}_{p_{j}+1}
$$

is not the only reduced ϕ-partition of $\left(p_{j+1}+1\right) A_{j}$.
Since $A_{j} / 2$ is not simple, it has a reduced ϕ-partition

$$
A_{j} / 2=\underbrace{1+\cdots+1}_{y_{0}}+\underbrace{A_{1}+\cdots+A_{1}}_{y_{1}}+\cdots+\underbrace{A_{j-1}+\cdots+A_{j-1}}_{y_{j-1}}
$$

which is obtained by algorithm (II). (Notice that $y_{\ell} \neq 0$ for $0 \leq \ell \leq j-1$). Hence,

It follows that

$$
\phi\left(A_{j}\right)=\phi\left(A_{j} / 2\right)=y_{0}+y_{1} \phi\left(A_{1}\right)+\cdots+y_{j-1} \phi\left(A_{j-1}\right)
$$

$$
\begin{equation*}
\left(p_{j+1}+1\right) A_{j}=\underbrace{1+\cdots+1}_{2 y_{0}}+\underbrace{A_{1}+\cdots+A_{1}}_{2 y_{i}}+\cdots+\underbrace{A_{j-1}+\cdots+A_{j-1}}_{2 y_{j-1}}+A_{j+1} \tag{1}
\end{equation*}
$$

is a reduced ϕ-partition.
Lemma 4: Let $n=m A_{i}$ with $i>1, p_{i+1} \nmid m$ and $p_{i+j}^{2} \mid m$ for some $j>1$. Then n is not semisimple.

Proof: Put $m^{\prime}=m / p_{i+j}$. Then

$$
n=\underbrace{m^{\prime} A_{i}+\cdots+m^{\prime} A_{i}}_{p_{i-j}}
$$

is a ϕ-partition. Hence, if the reduced ϕ-partition

$$
n=\underbrace{A_{i}+\cdots+A_{i}}_{x_{i}}+\underbrace{A_{i+1}+\cdots+A_{i+1}}_{x_{i+1}}+\cdots+\underbrace{A_{i+t}+\cdots+A_{i+t}}_{x_{i+1}}
$$

is obtained by following the algorithms (I, II), then $x_{i} \geq p_{i+j}>p_{i+1}$. Thus, by Lemma 3, n is not semisimple.

3. PROOF OF THE THEOREM

It is evident that primes and 3^{2} are all semisimple. By Lemma 2 and Lemma 4, we need to consider only $n=a q_{1} \cdots q_{k} A_{i}$ as given in the Theorem.

Write $q_{j}-p_{i+1}=\alpha_{j}$ for $i \leq j \leq k$ and $p_{i+2}-p_{i+1}=\beta$. Then $\alpha_{1}>\alpha_{2}>\cdots . \alpha_{k}$ and $\alpha_{j}>\beta$ for $1 \leq j \leq k-1$.

It is easy to see from the definition that n has a reduced ϕ-partition if and only if there are nonnegative integers $x_{0}, x_{1}, \ldots, x_{\ell}$ such that

$$
\left\{\begin{align*}
n & =x_{0}+x_{1} A_{1}+\cdots+x_{\ell} A_{\ell}, \tag{2}\\
\phi(n) & =x_{0}+x_{1} \phi\left(A_{1}\right)+\cdots+x_{\ell} \phi\left(A_{\ell}\right) .
\end{align*}\right.
$$

Further, n is semisimple if $\left(x_{0}, x_{1}, \ldots, x_{\ell}\right)$ is unique.
For $n=a q_{1} \cdots q_{k} A_{i}$, we have a reduced ϕ-partition

$$
\left\{\begin{array}{c}
n=a_{i} A_{i}+\cdots+a_{i+k} A_{i+k}, \tag{3}\\
\phi(n)=a_{i} \phi\left(A_{1}\right)+\cdots+a_{i+k} \phi\left(A_{i+k}\right),
\end{array}\right.
$$

which is obtained by the algorithm (II). On the other hand, we have the ϕ-partition

$$
n=a q_{1} \cdots q_{k} A_{i}=\underbrace{a q_{1} \cdots q_{k-1} A_{i}+\cdots+a q_{1} \cdots q_{k-1} A_{i}}_{\alpha_{k}}+a q_{1} \cdots q_{k-1} A_{i+1}
$$

Let the reduced ϕ-partitions

$$
\left\{\begin{align*}
q_{1} \cdots q_{k-1} A_{i} & =b_{i} A_{i}+\cdots+b_{i+k-1} A_{i+k-1}, \tag{4}\\
\phi\left(q_{1} \cdots q_{k-1} A_{i}\right) & =b_{i} \phi\left(A_{i}\right)+\cdots+b_{i+k-1} \phi\left(A_{i+k-1}\right),
\end{align*}\right.
$$

and

$$
\left\{\begin{array}{c}
q_{1} \cdots q_{k-1} A_{i+1}=c_{i+1} A_{i+1}+\cdots+c_{i+k} A_{i+k}, \tag{5}\\
\phi\left(q_{1} \cdots q_{k-1} A_{i+1}\right)=c_{i+1} \phi\left(A_{i+1}\right)+\cdots+c_{i+k} \phi\left(A_{i+k}\right),
\end{array}\right.
$$

be obtained by the algorithm (II). Then $a_{i}=a b_{i} \alpha_{k}, a_{i+j}=a\left(b_{i+j} \alpha_{k}+c_{i+j}\right)$ for $1 \leq j \leq k-1$ and $a_{i+k}=a c_{i+k}$. It is not difficult to show by induction on k that

$$
a_{i}=a \alpha_{1} \cdots \alpha_{k}, b_{i}=\alpha_{1} \cdots \alpha_{k-1} \text { and } c_{i+1}=\left(\alpha_{1}-\beta\right) \cdots\left(\alpha_{k-1}-\beta\right) .
$$

We now proceed by induction on k to prove that $a_{i}>a_{i+1}>\cdots>a_{i+k}$. When $k=0$, there is nothing to show. Suppose that $k>0$ and the conclusion holds for $k-1$. From this, we can assume that

$$
b_{i}>b_{i+1}>\cdots>b_{i+k-1} \text { and } c_{i+1}>\cdots>c_{i+k} .
$$

Thus,

$$
a_{i+j}-a_{i+j+1}=a\left[\left(b_{i+j}-b_{i+j-1}\right) \alpha_{k}+c_{i+j}-c_{i+j+1}\right]>0 \text { for } 1 \leq j \leq k-1 .
$$

It remains to show that $a_{i}>a_{i+1}$. We claim that $a_{i}=\beta a_{i+1}+a\left(\alpha_{1}-\beta\right) \cdots\left(\alpha_{k}-\beta\right)$ which implies the conclusion. In fact, it is obvious for $k=1$. Assume it holds for $k-1>0$. From this, it follows that $b_{i}=\beta b_{i+1}+\left(\alpha_{1}-\beta\right) \cdots\left(\alpha_{k-1}-\beta\right)=\beta b_{i+1}+c_{i+1}$. Thus, $a_{i}=a b_{i} \alpha_{k}=a\left(\beta b_{i+1}+c_{i+1}\right) \alpha_{k}$ $=a\left(\beta b_{i+1} \alpha_{k}+\beta c_{i+1}\right)+a c_{i+1}\left(\alpha_{k}-\beta\right)=\beta a_{i+1}+a\left(\alpha_{1}-\beta\right) \cdots\left(\alpha_{k}-\beta\right)$. Recall that $a_{i}<p_{i+1}$.

Set

$$
S=S(n)=\left\{\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{i+k}\right) \mid \underline{x} \text { satisfies (2) }\right\} .
$$

Then $\underline{a}=\left(a_{0}, \ldots, a_{i-1}, a_{i}, \ldots, a_{i+k}\right) \in S$, where $a_{0}=\cdots a_{i-1}=0$ and a_{i}, \ldots, a_{i+k} are as in (3). Define on S an order " \succ " as $\underline{x} \succ \underline{x^{\prime}}$ if $x_{j}>x_{j}^{\prime}$, for some $j \geq 0$, and $x_{j+\ell} \geq x_{j+\ell}^{\prime}$ for $\ell \geq 0$. Since

$$
\begin{aligned}
n & =\sum_{j=i}^{i+k} a_{j} A_{j} \leq \sum_{j=i}^{i+k-1}\left(p_{j+1}-1\right) A_{j}+a_{i+k} A_{i+k} \\
& =-A_{i}+\left(a_{i+k}+1\right) A_{i+k}<\left(a_{i+k}+1\right) A_{i+k}<A_{i+k+1}
\end{aligned}
$$

every solution of (2) is contained in S, and similarly, we can show that \underline{a} is the maximal element of the totally ordered set (S, \succ). If $S \neq\{\underline{a}\}$, we let \underline{b} be the maximal element of ($S \backslash\{\underline{a}\}, \succ$) and distinquish two cases as follows:
(i) $b_{j}>p_{j+1}$ for some $1 \leq j \leq i+k$. Put

$$
\underline{t}=\left(b_{0}+y_{0}, b_{1}+y_{1}, \ldots, b_{j-1}+y_{j-1}, b_{j}, b_{j+1}+1, \ldots, b_{i+k}\right)
$$

where $y_{0}, y_{1}, \ldots, y_{j-1}$ are as in (1). Then it follows that $\underline{t} \in S$. Since $\underline{t}>\underline{b}$, then $\underline{t}=\underline{a}$. In fact, this is impossible since, in formula (1), $y_{\ell} \neq 0, \ell=0,1, \ldots, j-1$, always holds. This contradicts $a_{0}=0$.
(ii) $b_{j} \leq p_{j+1}, j=1,3, \ldots, i+k$. Since $\underline{a} \succ \underline{b}$, there is an $\ell, i \leq \ell \leq i+k$, such that $a_{\ell}>x_{\ell}$ and $a_{\ell+j}=b_{\ell+j}$ for $j>0$. Write $c=a_{\ell}-x_{\ell}^{0}$ and $c_{j}=x_{j}^{0}-a_{j}, j=0,1, \ldots, \ell-1$. Then

$$
c A_{\ell}=\sum_{j=0}^{\ell-1} c_{j} A_{j} \text { and } c \phi\left(A_{\ell}\right)=\sum_{j=0}^{\ell-1} c_{j} \phi\left(A_{j}\right) .
$$

Thus,

$$
c\left(A_{\ell}-\phi\left(A_{t}\right)\right)=\sum_{j=1}^{\ell-1} c_{j}\left(A_{j}-\phi\left(A_{j}\right)\right) .
$$

Set $\sigma_{j}=\phi\left(A_{j}\right) / A_{j}$. Then $\sigma_{j}>\sigma_{j+1}$ for $j \geq 1$, and $0<\left(1-\sigma_{j}\right) /\left(1-\sigma_{\ell}\right)<1$ for $1 \leq j<\ell$. Put $\tau_{j}=\left(1-\sigma_{j}\right) /\left(1-\sigma_{\ell}\right)$. Then

$$
c A_{\ell}=\sum_{j=1}^{\ell-1} c_{j} A_{j} \tau_{j} \leq \sum_{j=1}^{\ell-1}\left|c_{j}\right| A_{j} \tau_{j}<\sum_{j=1}^{\ell-1}\left|c_{j}\right| A_{j} .
$$

If $\ell=i$ (when $k=0$ this is always the case), then $c_{j}=x_{j}^{0}$ for $0 \leq j<\ell$. In this case,

$$
c A_{\ell}<\sum_{j=1}^{\ell-1}\left|c_{j}\right| A_{j}=\sum_{j=1}^{\ell-1} c_{j} A_{j} \leq c A_{\ell},
$$

which is a contradiction. If $\ell>i$, then $a_{\ell-1}>a_{\ell} \geq 1$, and

$$
c A_{\ell}<\sum_{j=1}^{\ell-1}\left|c_{j}\right| A_{j} \leq\left(p_{\ell}-2\right) A_{\ell-1}+\sum_{j=1}^{\ell-2} p_{j+1} A_{j}=A_{\ell}-A_{\ell-1}+A_{\ell-2}+\cdots+A_{2}<A_{\ell}
$$

which again yields a contradiction. By the preceding discussion, we have shown $S=\{\underline{a}\}$, i.e., \underline{a} is unique. The proof is complete.

4. CONCLUDING REMARKS

We mention here that it would be interesting to find the set $S(n)$ for any nonsemisimple number n. We guess that there is a unique $\underline{x}=\left(x_{0}, x_{1}, \ldots\right)$ in $S(n)$ such that $o \leq x_{j} \leq p_{j+1}$ for $j \geq 1$. In this case, $S(n)$ can be derived exclusively by using the algorithms (I, II) and formula (1).

ACKNOWLEDGMENT

I wish to thank the referee for a shorter and simpler proof of Lemma 3 and for many valuable comments.

REFERENCE

1. Patricia Jones. " ϕ-Partitions." Fibonacci Quarterly 29.4 (1991):347-50.

[^0]: * Research supported by the National Natural Science Foundation of China.

