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1. INTRODUCTION

As a generalization of the equation @(x)-+¢(k)=d(x+k), ¢-partitions and reduced ¢-
partitions and reduced ¢ -partitions of positive integers were considered by Patricia Jones [1].
That is, n=a, +---+a; is a ¢-partition if i > 1 and ¢(n) = @§(a,)+--- +¢(a;), where ¢ is Euler's
totient function. Furthermore, a ¢ -partition is reduced if each of its summands is simple, where a
simple number is known as 1 or a product of the first primes.

In [1] the author conjectured that every nonsimple number has exactly one reduced ¢-
partition. Here, we show that the conjecture is false. In fact, we will see that the positive integers
satisfying the conjecture are quite rare. The main purpose of this paper is to give a complete
characterization of positive integers that have exactly one reduced ¢ -partition.

Throughout the paper, let p and g denote distinct primes, especially, p, denote the i™ prime,
and 4y =1, 4, =11, p bethe i™ simple number.

It is shown in [1] that every simple number has no ¢ -partitions and every nonsimple number
has a ¢ -partition as follows:

O n=p*Y+--+p*tifn=p“fora>landp /1,

p
(II) n=j+---+j+gqjif n= pj wherep and g do not divide j and g < p.
[
p=q
This gives algorithms from which we can obtain at least one reduced ¢ -partition of any non-
simple number.

A nonsimple number is called semisimple if it has exactly one reduced ¢ -partition.
Our main result is the following:

Theorem: Let n be nonsimple. Then 7 is semisimple if and only if
(i) nisaprime or n=3% or

(i) n=aq, - qpd with a(qy = pua) - (G = Pint) < Py, Where 121, k=0,
G, > q, >+ >q; > P;y, are primes and a is a positive integer.

We will present the proof of the Theorem in Section 3.

It can be seen from the Theorem that (p,,, —1)4; and p,,, 4, are semisimple. For k& >2, the
smallest semisimple number is 2x3x5x7x11x13x19x23 =19 x23 x 4.
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2. LEMMAS

First, we state without proof a basic and simple lemma.

Lemma 1: Let n be semisimple and n=a, +--- +a; be any of its ¢-partitions. Then every g, is
simple or semisimple.

Lemma 2: Let nbe odd. Then 7 is not semisimple except 7= p or 32.

Proof: Using the algorithms (I, II), we know that one of pq and p® (o> 1 and p* >3?)
equals n, or a summand of some ¢ -partition of #. We have the reduced ¢ -partitions of pq and
p* as follows:

pg= 1+-+1 +2+---+2=14+--+14+2+---+2+6,

—— — —_ —
(P—2)g-2)-2 p+q-1 (p-2Xg-2) p+q-5

pY =14 4+1+2+4--2=1+--+1 4+2+---+2+6.
| R N — | S— | —
Ay Tt e P

Now the result follows from Lemma 1. O

Lemma 3: Suppose

n=1+--+1+A4++4+ 4+ +4

Xo X X;

is a ¢ -partition. Then 7 is not semisimple if x; > p,,, +1 for some 1< j <i.
Proof: 1t is sufficient to show that

(P +DA; =4+ + 4
—_—
pj+l

is not the only reduced ¢ -partition of (p,,, +1)4;.
Since A4, /2 is not simple, it has a reduced ¢ -partition

A 12=1++1+ A4+ -+ A4+ + A4+ + A,
%,—J h—.ﬂ,—/ \
Yo b4l Vi1

which is obtained by algorithm (II). (Notice that y, # 0 for 0< /¢ < j—1). Hence,
O(A4;)=9¢(4;/2)=yy + y1¢(4) + -+ +yj—l¢(Aj-l)'

It follows that
P+ DA, =1+ H I+ A+ A+ A+ + A+ A 1)
—_— Y— | ——
2y 2y; 2y,

is a reduced ¢ -partition. O

Lemma 4: Let n=mA; withi>1, p,,, m and p?, ;|m for some j > 1. Then 7 is not semisimple.
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Proof: Putm' =m/p, ;- Then
n=m4+--+m4
| ———
Pi-j
is a ¢-partition. Hence, if the reduced ¢ -partition
n:{lj, +...+A’, +:’41+1+"'+Ai+1+"'+\Ai+t +"'+Ai+t

X

Xist Xity

is obtained by following the algorithms (I, 1), then x; > p,,, > p,,;. Thus, by Lemma 3, 7 is not
semisimple. [

3. PROOF OF THE THEOREM

It is evident that primes and 32 are all semisimple. By Lemma 2 and Lemma 4, we need to
consider only # =aq, --- g, 4, as given in the Theorem.

Write ¢, —p,, =« fori< j<kand p,, - p =B Thenoa;>a,>--.c¢; and a; > f§ for
1<j<k-1

It is easy to see from the definition that # has a reduced ¢ -partition if and only if there are
nonnegative integers x,, X;, ..., ¥, such that

@

n=x,+x A4+ +x,4,,
{¢(”) =Xo +x,0(A4;) +--- + x,0(4,).
Further, 7 is semisimple if (x,, x;, ..., X,) is unique.
For n=agq, --- q, 4,, we have a reduced ¢ -partition
M=yt A, @
{4’(") =q¢(A4)+ - +0,,0(44),
which is obtained by the algorithm (IT). On the other hand, we have the ¢ -partition
n=aq - @4 =aq - G 4+ o +aqy - Gy A +aqy e Qe A

L7

Let the reduced ¢ -partitions

{ G G A =b A+ + b A, @
¢(qs - Ga4) = bO(A) + - + b1 04 er),
and
{ G Ge-14im = G+ + G i )
¢(qr - G141 = G (Aip) + o + 6 0( A ),
be obtained by the algorithm (II). Then g, =abo,,a;,; =a(b, 0, +c;, ;) for 1< j<k-1 and

a,,, = ac;,,. Itis not difficult to show by induction on & that

a,=ao 0, b =00y and ¢y = (00— ) (0 - B).
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We now proceed by induction on % to prove that a; > a,,, >--->a,,,. When k = 0, there is
nothing to show. Suppose that £ > 0 and the conclusion holds for £ — 1. From this, we can
assume that

b>b > >byyy and ¢y > >0
Thus,
Apj = Ay = (B = by j)0 +C1j —Ciyjq]>0 for 1< j<k -1

It remains to show that a; > a;,,. We claim that a, = fa,,, +a(o, — B) --- (o, — ) which implies

1

the conclusion. In fact, it is obvious for £ = 1. Assume it holds for £ —1>0. From this, it fol-
lows that &, = b, +(ct; =) (0, —B) = Pby +¢yy.  Thus,a; = abor, = a(Pb,,, +¢,0)e,
=a(Pb;,0, + Beiyy) +ac,, (o, — B) = Pa,, +a(a; - B) - (ot — B). Recall that a; < p,,,;.
Set
S =8(n)={x=(xy, Xy, ..., X, )| x satisfies (2)}.

Then a=(ay,...,a,_,,q,,...,a,,;) €S, where gy =---a,_, =0 and a,, ..., a;,, are as in (3). Define

on § an order ">" as x >x'if x; > x/, for some;j >0, and x,,, > x],, for £>0. Since

i+k i+k-1

n= ZajAj < Z(pj+1 - l)Aj +ai+kAi+k
=i

J=i
=—A + (0 + DA <@ DAy <A
every solution of (2) is contained in S, and similarly, we can show that a is the maximal element

of the totally ordered set (S, >). If § # {a}, we let b be the maximal element of (§\{a}, ~) and
distinquish two cases as follows:

@ b >pin forsome.ISjSHk. Put
1=y +Yo, b+ )1, b+, 6,, b0+, b))

where Yo, »1,..., ¥, are as in (1). Then it follows that  €S. Since 7> 5, then =a. In fact,
this is impossible since, in formula (1), y,#0,£=0,1,..., j—1, always holds. This contradicts
a, =0.

(i) b,<p;y,j=13,..,i+k. Since a>b, thereisan {,i</<i+k, such that a, > x, and
Ay =byy; forj>0. Write c=a,-x{ andc; =x%-a,, j=0,1,...,/~1. Then

-1 -1
c4, = ZCJ'AJ' and c¢(4,) = ch([)(Aj).
J=0 /=0

Thus,

-1

o4, ~9(4)) =Y c,(4;, - 9(4))).

J=1

Set 0, =¢(4;)/ A;. Then 6,>0,, forj>1, and 0<(1-0,)/(1-0,)<1for1<j</ Put
7,=(1-0,;)/(1-0,). Then
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e-1 e-1 -1
cAy =3 c; A, <Y e |AT, <D e, |4,
j=1 j=1 j=1
If £ =i (when k = 0 this is always the case), then ¢, = xg for 0< j < /. Inthis case,

Jr T

e-1 £-1
cA, <) lc;14; =) ¢ A; <cA,,
j=1 J=1

which is a contradiction. If />i, thena, ; >a,>1, and

£-1 ) -2

cAy <Y le;14; <(p,—2)4,, +ij+1Aj =A,—A A+ + A, < A4,

J=1 J=1

which again yields a contradiction. By the preceding discussion, we have shown § = {a}, i.e, a

is unique. The proofis complete. O

4. CONCLUDING REMARKS

We mention here that it would be interesting to find the set S(n) for any nonsemisimple
number n. We guess that there is a unique x =(xy, x;,...) in §(n) such that o<x, <p,,, for

j=1. In this case, S(n) can be derived exclusively by using the algorithms (I, II) and formula (1).
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