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PROBLEMS PROPOSED IN THIS ISSUE 

H°483 Proposed by James Nicholas Boots (deceased) & Lawrence Somer, The Catholic 
University of America, Washington, D. C 

Let m > 2 be an integer such that 

Lm = \{mo&m) (1) 

It is well known (see [1], p. 44) that if m is a prime, then (1) holds. It has been proved by H. J. A. 
Duparc [3] that there exist infinitely many composite integers, called Fibonacci pseudoprimes, 
such that (1) holds. It has also been proved in [2] and [4] that every Fibonacci pseudoprime is 
odd. 

(i) Prove that 
Ll^ + L^-e^Oimodm). 

In particular, conclude that if m is prime, then Lm_x = 2 or - 3 (mod m). 

(ii) Prove that 
Fm-2-Lm-lFm-l = l ( m o d / l f ) . 
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H-484 Proposed by J, Rodriguez, Sonora, Mexico 

Find a strictly increasing infinite series of integer numbers such that, for any consecutive three 
of them, the Smarandache Function is neither increasing nor decreasing. 
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*Find the largest strictly increasing series of integer numbers for which the Smarandache 
Function is strictly decreasing. 

H-485 Proposed by Paul S. Bruckman, Everett, WA 

If x is an unspecified large positive real number, obtain an asymptotic evaluation for the sum 
S(x), where 

s(*) = Z(-i)Z(p); (i) 
p<x 

here, the p's are prime and Z(p) is the Fibonacci entry-point of/? (the smallest positive n such that 

D I S -

SOLUTIONS 

Sum ProbSem 
H-469 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 30, no. 3, August 1992) 

Define the Fibonacci polynomials by 
F0(x) = 0, F1(x) = l, Fn(x) = xFn_l(x) + Fn_2(xl forn>2. 

Show that for all positive integers n and all positive reals x: 
Jc7T 

1 v 2 + 4 2 " - 2 C 0 S o 7 
1 _ x + 4 V / i\k+n+i 2 n - l E,„_,(x) 2 n - l S 

2/1-1 

(b) 1 =x(x2+4)2g (-1)*+" 
^ ( * ) 4n t t J

0 j c 2 + 4 c o s 2 ^ ' 
2/i 

Solution by Paul S. Bruckman, Everett, WA 
From the given recurrence relation and the initial conditions, we readily establish that F„{x) 

is a monic polynomial in x of degree « - 1 . In particular, 

a" -B" 
Fn{x) = ̂ ^ - , (1) 

a- p 
where 

a = a ( x ) = 4 ( x W x 2 + 4 ) , /? = /?(*) = | ( x - V x 2 +4) . (2) 

If we make the substitution 
x = 2sinh<9, (3) 

we obtain a = e0, fi = -e 6\ 2cosh 6 - Vx2 + 4. This leads to the alternative formulation: 

/^ •W = ̂ z 2 » : (4) 
cosh 0 
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^, ( * ) = 
sinh 2n6 

cosh0 (5) 

Proof of Part (a): We readily find the zeros of F2n_l(x) from (4) {In-2 in number); we 
shall suppose that n > 1 initially. 

Denoting these by xk, we obtain: 

^ = ^ or ~yk =yk> w h e r e ^ = 2 s i n h — — = 2ismt//k9 2 ( 2 « - l ) 

and ^ = 
(2£ - l ) ; r 
2 ( 2 w - l ) s 

(6) 
£ = 1,2,...,/?-!. 

Note that the y/^'s are distinct and 0 < ^ < y ;r for each &; thus, the x^'s are distinct. Therefore, 
the xk's are simple poles of the function l/F2n_l(x). By the residue theory, we may find 
constants Ak such that 

k=1\x-yk x + yk 

In fact, the Ak's are determined from the following: 

Ak = lim *-yk 

^ » ^ » - i ( x ) 

(7) 

(8) 

Then, applying L'Hopital's Rule, 

J__d_ 
Ak dx 

J^ - iO) ; = Fin-i(yk)-

Now dx I d9 = 2 cosh #, which implies that d61 dx = ycosh#. Hence, by (4), we obtain: 

F2n-\(x) = y(cosh6T 3 [(2»- l)cosh(9sinh(2«-l)(9-sinh 6>cosh(2»- 1)0]. 

Then sirih(2n-\)iif/k = /'sin(#--*•)# = - / ( - l ) * , and cosh(2n-l)iy/k = co^/c - ^K = 0. Thus, 

^ViCVt) = " ' ( - I ) * ( 2 " - 0 / 2 c o s - 2 ^ , and Ak = ̂ ^ - c o s 2 y/,. 
2n-l 

Then, using (7), we obtain: 

_2i "-' 
l / ^ - i W = " r X ( - l ) * c o s V * [ ( * - . ) / t ) " 1 - ( * + .y*)"1] 

?7 "~1 

2/ Z(-D* 2 « - l 
2 4/ sin ^ 

cos ^ . - ^ 
8 ^ ( - l ^ c o s V i t S i n ^ . 

k=\ xz +4sin2 y/k 2n-\k=x x2+4$m2y/k 

Substituting n - k for k yields: 

1994] 93 



ADVANCED PROBLEMS AND SOLUTIONS 

2n-l ^ xz+4cos <pk 2n-\ 

Now, substituting 2n -1 - k for k yields: 

,/F (Y,- 8 V(-l)^+1sin2^cos^, 
2n-l £n x^+4cos <pk 

By addition, we obtain: 

2/2-1 j^J x 2 + 4 c o s (pk 

We may also include the term for k - 0 in the sum indicated in (9), since this term vanishes. 
Note that we have the following series manipulation: 

i / 7 - / \ /o ix-i2^2 / ixit+w+i *2 + 4 - x 2 - 4 c o s 2 c ^ l/F2„.1(x) = (2/i-l) SC"1) ° o s ^ — ^ - , 
k=o * +4 cos ^ 

or 

i /^.W = f ± T 2 I ( - i ) M ^ - ^ — + | = ^ ^ , do) 
2n-l £?0 xz+4cos<pk 2n-\ 

where 
5„= 2 | ; 2 ( - i )*cos^ . ( i i) 

A:=0 

Comparing (10) with the desired answer to part (a), we see that it only remains to show that 
Sn = 0. This is readily determined as follows: 

2n-2 

Sn = Re J ] (" 1)* expOl/r / {In -1)) 
&=0 

^Rc M-expQWQjf-l))2"-1 L R J l + exp(/>) , = Q 
\ 2 « - l 

1 + exp(/7r / (2« -1)) J """ [ 1 + exp(/> / (2« -1)) 

Thus, part (a) is proved for n > 1. Also, we see that the indicated formula gives the correct 
expression for n = 1. This completes the proof of part (a). 

Proof of Part (b): We suppose n>0. From (5), we find that F2n{x) has 2n-l simple 
zeros, given by z0 - 0, zk or - zk — zk, where zk -2 sinh( kin 12ri) - 2i sinh E>k, and %k = kn /2n, 
£ = 1, 2, . . . , w - 1 . As before, we find that 

\IF2n(x) = BJx + YJ 
k=\ 

where 
x-zk 

- ^ - + - ^ - 1 (12) 
V X Zk X + Zk J 

Bk=Km-—\ = \IF{n{zk), k = 0,l,...,n-l. (13) 
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We find that F{n(x) = j(cosh<9)~3[2ncosh6cosh2«0-sinh 0sinh2w0], using (5). Then 
cosh2/«£fc =cosA7r = (-l)* and sinh2/w^ =/sinA^ = 0; hence, F{n(zk) -n{-\)k cos"2 <^, and 
5^ = -±(-1)* cos2 ^ (note that B0 = 1/w). Then 

1 I""1 
1/F2ll(x) = — + - X ( - l ) " c o s 2 ^ [ ( x - 2 / S i n ^ ) - 1 + ( x + 2 / s i n ^ r 1 ] 

/?x n k=l 

= ± + 2 x g ( - l ) * c o s 2 ^ 
«x w fc=1 x + 4 sin %k 

Replacing khyn-k yields: 

i/F2.(x)=J-+^g(-irt
 2

si"2^2, 
wx w jri x +4cos ^ 

Now, replacing kby 2n-k also yields: 
2w-i ™ 2 

1 / 4 W - + - Z(-ir 2
si" ** 

Then, adding the last two expressions, we obtain: 

2 2x 2^LT 2x 2/F2n(x) = — + —'£Ul x~\ 
nx n 

where 
\k+n 

k=0 

uk=(-iy 
sin2 gk 

x + 4 cos %k 

Thus, we find that 

4wj^0 x 2 + 4 c o s 2 ^ 4/? ^ 0 4n 
where 

2/7-1 

^ = ( - l ) / : + " ( x 2 + 4 c o s 2 ^ / 2 ^ ) - 1 , and r f l = ^ H ) * . 

Clearly, Tn-0. Therefore, the last result reduces to the expression given in part (b). Q.E.D. 

Also solved by Hans Kappus and the proposer. 

Characteristically Common 

H-470 Proposed by Paul S. Bruckman, Everett, WA 
(Vol 30, no. 3, August 1992) 

Please see the issue of The Fibonacci Quarterly shown above for a complete presentation of 
this lengthy problem proposal. 
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Solution by the proposer 
Proof of Part (A): We begin with the definition of pr(z), namely, pr(z) =\zlr - Ux

r)\, where 
Ir is the rxr identity matrix. Thus, 

z-a0 
-1 
0 

6 
0 

-a , 
z 

-1 

6 
0 

- a 2 •• 
0 •• 
z 

6 •• 
o •• 

• ~ar 

0 
0 

6 
z 

r-\ 

PrW = 

Expanding along the last column, we obtain: pr(z) = (-l)r ar_xAr_x(z) + zpr_x(z), where Ar_x{z) is 
the determinant of the ( r - l ) x ( r - l ) matrix whose elements atj are defined by: a2J = zSl+x 7 -
^ •; thus, this matrix is upper triangular, and so Ar_x(x) - (-l)r_1, the product of the diagonal 
entries. Hence, pr(z) = zpr_x(z)-ar_Y. We note that px(z) = z-aQ; thus, p2(z) -z(z-aQ)-ax -
z2-a0z-al; p3(z) = z(z2 -a0z-
have: 

•al)-a2=z -a0z -axz-a2\ and we see, in general, that we 

Pr(z) = Gr(z). D (*) 

Proof of Part (C): We suppose r>\. Clearly, the desired relation is valid for n = 1. 
Suppose it is valid for some value of n > 1. Then (U^fH^ = U[r){U[r))"'xH[r) or, by the 
inductive hypothesis: 

{U\r))"H[r) = U[r)H^ (for this special value of n). (6) 

Premultiplication of the j * column of H(p by the /'th row of U\r) replaces H{£r_U] by H%> n+r-i+1, jf 

which is clear, using (5), if / > 1; however, this is also true for / = 1, since H^r_x is then trans 
formed to Hr

kJ0akH^r_x_kj7 which is equal to H^r •, by the recurrence Gr(E)(H^j) = 0. Thus, 
we see that U\r)H{

n
r) = #£>; it follows from (6) that (U[r))nHx

{r) = H{
n% which is the statement 

of part (C) for n +1. The result then follows by induction. • 

The proof of part (B) will appear in the May 1994 issue of this Quarterly. 
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