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1. INTRODUCTION, NOTATIONS, AND A THEOREM 

By "doubling diagram mod m" we mean the directed graph whose vertices are 0 and the 
natural numbers less than m, with directed arcs (arrows) from each vertex x to 2x reduced modulo 
m. 

^ „5 i O ^„3 r^2 %Q- ^ ^ 
c2y c°y \ c^J m = 2 m = 3 ^ ^ - ' 3 
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I gave pages with the diagrams for w's from 2 to 31 to a group of students, and asked them 
to find regularities. This took place at the School of Education of Tel Aviv University, in an 
elective course for non-mathematicians, intended to improve their ideas about mathematics. The 
students recognized some known phenomena (see [1]), including the fact that, for an odd m, all 
the vertices are arranged in cycles. Suzanah Erseven, a prospective English teacher, examined the 
numbers of cycles in the diagrams for the odd m's, and found that the sequence of these numbers 
consists of two even numbers and two odd numbers, alternately. Her discovery is reformulated 
here as Theorem 1. Its proof is the central topic of this paper. 

Notations: In the following, the variable m will denote the modulus of the diagram, and will be 
limited to odd numbers. 

L(m) is the number of vertices in the cycle of 1, 
C(m) is the number of cycles with vertices that are relatively prime to m, and 
T(m) is the total number of cycles in the doubling diagram modulo m, including the cycle of 0. 
<p{ri) is the Euler function (number of natural numbers less than and relatively prime to n). 

A number m will be called "O.K.11 if it agrees with the following theorem. 

Theorem 1: m = ±l (mod 8) => T(m) is an odd number. 
m = ±3 (mod8) => T(m) is an even number. 

2. PROOF OF THEOREM 1 

The proof of Theorem 1 will emerge from some propositions and results. Let us start with 
these. 

Since a chain of n arrows leads from x to x iff x-2n = x (modm), that is, iff m\x(2n -1), it 
follows that 

74 [FEB. 



CYCLES IN DOUBLING DIAGRAMS MOD m 

I. L(m) is the minimal n such that m\2n - 1 , and it divides any other n with this property. 
II If x is prime to m, then its cycle is also of length L(m) (and all the vertices in this cycle are 

relatively prime to m). 
III. The length of any cycle in the doubling diagram mod m divides L(m). [m|2L(m) - 1 hence 

m\x(2L^m) -1) hence L(m) arrows from x end at x.] 
IV. C(m) • L(rn) = <p{m). (This follows from II) 

Since 2x = y (mod m) <=> 2kx = ky (mod km), it follows that 

V. If we multiply by k the values of the vertices of a cycle in the doubling diagram mod m, we 
get a cycle in the doubling diagram mod km. 

VI. L(m)\L(km). (This results from III and V.) 

Proposition 1: For every prime number p&2, L(pn+1) is equal to either /?•£(/?") orL(pn). 

Proof: Denote L{pn) by X. Then pn\Lx - 1 , that is, 2X = 1 ( m o d / ) , hence 2X = 1 (mod/?), 
and so are all of the powers of 2X. From this, it follows that 1+2X + 22X + • • - + 2{p~l)X is divisible 
by/?, and therefore 2 ^ - 1 , which is the product of this sum and 2X -1, is divisible by pn+l. By 
this and by II we have that L(pn+l)\Ap, and by VI we have that X\L(pn+l). U 

Remark a:. Let k = (2X -1) / pn. Then 

1 + 2A + 22^ + - - - + 2
(P"1)A =1 + (>fcpw +1) + (^pw +1)2 + - - - + (^7" -f-1)^-^ 

= p + ^ " - ( l + 2 + ..- + (p - l ) ) + p 2 " - ( - ) 
= P + kpn-p.{p-l)l2 + p2n.{:.). 

The second term on the extreme right side is divisible by p1 (even for n = 1, since p^2), so the 
total sum is not a multiple of p2. Therefore, if 2X - 1 is divisible by /?w but not by pn+l

9 then 
2Xp -1 is divisible by Jp"+1 but not by pn+1. From this one gets that if, for some n, L(pn+l) * 
L(pn), then L{pn+l) * L(pn) for all bigger w's. 

Remark b: Computer runs show that, for all prime numbers up to 100,000, there are just two 
cases where L{pn+l) - L(pn). These are Z(10932) = 1(1093) - 364 and Z(35112) = £(3511) = 
1755. 

Remark c: A theorem similar to Proposition 1 together with Remark a, but (still?) without 
examples as in Remark b, was proved by Wall [2] for the length of the period of the Fibonacci 
series reduced mod m. 

Lemma 1: If m - p is O.K., so is m - pn. 

Proof: <p(pn+l) = pn+l -pn - p-(p{pn). From this, together with IV and Proposition 1, it 
follows that C(pn+1) is either equal to C(pn) or else/? times greater. In any case, they are both 
even or both odd numbers. 

By V, the vertices in the doubling diagram mod pn+l that are the multiples of/? form a sub-
diagram congruent to the diagram mod pn, that is, they form T(p") cycles. So T(pn+l) = 
T{pn)+c(pn+ly 
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If p = ±1 (mod 8), then so is every pn. In this case T(p) is an odd number (we've assumed 
m - p is O.K.), so C(p) is an even number (they differ just by the cycle of 0); hence, all the 
C(pnys are even numbers and, therefore, all the T(pnys are odd numbers. 

If p = ±3 (mod 8), then p2 = 1, p3 = ±3, p4 = 1, and so on. In this case T(p) is an even 
number, so C(p) is an odd number; hence, all the C(/?")'s are odd numbers and, therefore, the 
T(p"y$ are even numbers and odd numbers, alternately. D 

Proposition 2: If mx and m2 are relatively prime to each other and to 2, then 

L{ml m^)- Lcm.^/Wj), L(rn2)). 

Proof: 2X -1 |2^ - 1 (the quotient is a sum of a geometric sequence). By I it follows that 
both ml and rr^ divide 2lcm^mi>),L^m2^ - 1 ? and so does their product. Hence, L{mlm2) divides 
1. c. m. ( Z ^ ) , L(m2)). Their equality follows from VI. • 

Remark: Wall [2] proves a similar theorem for the lengths of periods of the Fibonacci sequence 
reduced mod m (not limited to odd numbers). But this does not point at a special similarity 
between the Fibonacci sequence and the geometric sequence 1, 2, 4, ... . In [3] I suggested a 
generalization of both Wall's theorem and Proposition 2. Let a(i) be any sequence such that 
reducing its elements modulo m gives, for some zrc's, a periodic sequence (the period does not 
have to start at the very beginning). Let P(m) be the length of the period, and let mx and m2 be 
any two numbers for which P is defined. Then P(l. c.m.(mly m^)) -1.c.m. (P(ml)J P(m2)). This 
result, like Theorem 1, emerged from a suggestion of a student of mine (in a mathematics club for 
high school students). 

Proposition 3: If m1 a n d ^ are prime to each other and to 2 and different from 1, then 
C{ml n^) is an even number. 

Proof: Let us recall two properties of the Euler q> function: (a) If nx and n2 are relatively 
prime, then (p(nx n2)- (p{nx)• (p(n2). (b) If n ̂  2, then q>{ri) is an even number. 

Now, 

Cijnymj)-(p(mx m2)/L(mx-rr^) 
= (pim^ • (p(rrh)l 1- c m. {L{jn^ L(m2)) 
= <p(ml)/L(ml) ^(m2)/Z(/w2)g.c.d.(Z(w1),Z(/722)) 
= C(ml).C(nh).g.cAXL(m1), 1 ^ ) ) . 

At least one of the last three factors is an even number since, if C(m) is an odd number, then 
L(m), which equals <p{m) I C{m), is an even number. D 

Lemma 2: If ml and rr^ are as in Proposition 3 and are both O.K., then sois m = rnlm2. 

Proof: By V, those vertices in the diagram mod m that are multiples of mx form T(m2) 
cycles, and the multiples of n^ form T ^ ) cycles. Together they form TQn^ + T(m2) - 1 cycles, 
since the cycle of 0 is the only one that is counted both in TQrii) and in T(m2). 

Let us partition the other vertices into classes in the following way: For each pair dx and d2 
that are proper divisors of ml and m^, respectively, let us form the class of all the vertices that are 
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multiples of dx • d2 but not of any greater factor of m. We are going to show that the elements of 
such a class form an even number of cycles. Indeed, if we divide the elements of the class by 
dl-d2, we get the vertices of the doubling diagram modulo ml I dx and m^l d2 satisfy the condi-
tions of Proposition 3. 

It follows that T(m) is an even number <=> T{ml) 4- Tim^) - 1 is an even number o just one of 
T(mx\ TX/^) is an even number <=> just one of mu m2 is = ±3 (mod 8) <=> m = ±3 (mod8). D 

Lemma 3: Every prime number p ^ 2 is O.K. 

Proof: p divides 2p~l -1. Therefore, it divides either 2ip~l)n -1 or 2ip~l)n +1. 
Ifp divides 2(/?~1)/2 + 1 , then (p-l)/2 arrows of the diagram modp lead from 1 to - 1 (more 

precisely, top - 1). In one turn around the cycle of 1, the number of arrows from 1 to - 1 is equal 
to the number of arrows from - 1 to 1, so (p-l)/2 arrows make an odd number of half-turns 
around this cycle [that is, (p-l)/2 = an odd number -L(p)/2]. Since C(p) = (p -1)/ L(p) = 
((p -1 ) / 2) / (L(p) 12), it is an odd number and since, for a prime p, T(p) = C(p) +1, it follows 
that in our case T(p) is an even number. 

Ifp divides 2(;?~1)/2 - 1 , then (p -1 ) / 2 arrows lead from 1 to 1, hence (p - 1 ) / 2 is a multiple 
of L(p), hence C(p) = (p -1 ) / L(p) is an even number, so T(p) is an odd number. 

To complete our proof, we have to show that p\2^p~l^/2 - 1 <=>/? = ±1 (mod 8). 
Corollary 2.28 (or Theorem 3.1a) in Niven-Zuckerman [4], with a = 2, says that/? divides 

2(/7_1)/2 - 1 iff there is a solution for x2 = 2 (modp). Problem 10 on page 73 (solved by the last 
part of Theorem 3.3) says that x2 = 2 (modp) has a solution iff p = ±1 (mod 8). D 

Proof of Theorem 1: By Lemma 3, Lemma 1, and Lemma 2. D 

3. ANOTHER POINT OF VIEW AND ANOTHER THEOREM 

An exercise in long division in base 2 will show that L(m) is the length of the period of the 
binacy fraction for Xlm. Moreover, C(m) is the number of classes of fractions-in-lower-terms with 
the denominator m and with binary expansions whose periods are equal to each other up to a 
cyclic permutation, while T(m) may be described in the same way, omitting the words "in-lower-
terms." 

The analog of Theorem 1 for the base 10 is the following: 

Theorem 2: Let m be relatively prime to 10, and consider the number of different periods in the 
decimal expansions of fractions with the denominator m. This number is an odd number iff 
m = ±l or ±3 or ±9 or ± 27 (mod 40). 

The proof is similar to that of Theorem 1 with some self-evident modifications, but two addi-
tional lemmas are needed. For convenience, I am going to write "m is like 1" for m = ±1 or ±3 or 
±9 or ±27 (mod 40), and "JW is like 7" for m = ±7 or ± 11 or +17 or ± 19 (mod 40). 

Lemma 4: The product of two numbers like 1 and the product of two numbers like 7 are like 1; 
the product of a number like 1 and a number like 7 is like 7. 

Proof: By checking the different cases. D 
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The next lemma is needed for the last half of the proof of the base-10 version of Lemma 1. 

Lemma 5: Let m b e a natural number prime to 10. For each integer i from 0 to (m -1) / 2, let us 
write rt for the residue of 10/ when reduced mod m, and let n be the number of T-'S that are 
greater than mil. With this notation, n is an even number iff m is like 1. 

Proof: Numerical checks show that the lemma holds for every m<50. We have to demon-
strate that, if the lemma holds for some w > 1 0 , then it holds also for ra + 40. Let us assume 
m>ll 

Consider the sequence 0, 10, 20, ..., 5m - 5. Reducing its elements modulo m to get their rf 's 
consists of five stages: In the first stage we subtract 0-m, in the second stage l-m, and so on 
until the fifth stage, where we subtract 4m's. Each stage starts by yielding an rt of one digit, fol-
lowed by all the other numbers less than m, which end with that digit. (The fifth stage is not inter-
rupted by the end of the sequence, since adding 10 to the last element gives a number > 5m.) 

The rt 's we get in this way are different from each other, since m is relatively prime to 10, so 
they consist of all the integers from 0 to m - 1, having one of certain five digits for their last digit. 
Consequently, every ten successive integers in [0, m-1] include exactly five r7 's. 

Replacing m by m' = m + 40 does not change the above-mentioned set of five digits since, if 
I0i-jm = r with 1 < (m-l)/2 andy <4 , then \0(i + 4j)-jmf = r and /' + 4 / < ( / w ' - l ) / 2 . The 
set of the r7 's associated with mf that are greater than m' 12 include the old rt 's that are greater 
than ml 2, plus twenty new rf 's bigger than m-l, less ten rt 's that are between m/2 and m' 12. 

It follows that the n associated with m' is an even number iff the n associated with m is an 
even number. • 

This lemma, together with Theorem 3.2 of [4] (a lemma of Gauss), are used instead of 
Problem 10 at the end of the proof of the base-10 version of Lemma 3. Theorem 3.2 says, for 
a- 10, that if m is a prime number different from 2 and from 5, then the congruence x2 = 10 
(mod m) has a solution iff the n we have defined in Lemma 2 is an even number. Lemma 5 itself 
now completes the proof. 
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