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1. INTRODUCTION 

The product of two paths, PmxPn, is also known as the mxn complete grid graph, Gmn, 
having vertex set ZmxZn, where Zk denotes the set {1,2,..., k). Two vertices, (/', j) and (r, s), 
are adjacent when | / - r |+ . | j -5 |= l . Thus, |F|=Jwiand \E\=2mn-(m + n). 

Let G = (V, E) be a graph and v GV(G) . Then the closed neighborhood of v, denoted N[v], 
is the set {V}^J{U GV(G)\UV GE(G)}. 

The definition of fractional domination, as introduced by Hedetniemi et al. [3] is as follows: 
If g is a function mapping the vertex set, V(G), into some set of real numbers, then for S a subset 
ofV(G),let g(S) = £g(v) o v e r a l l s . Let \g\= g(V(G)) = g(vl) + g(v2) + - + g(v„). Areal-
valued function g: V(G) -> [0,1] is a, fractional dominating function if for every v eV(G), 
g(N[v]) > 1. A dominating function is minimal if for every v GV(G) with g(v) > 0, there exists a 
vertex u <EN[V] such that g(N[u]) = 1. The fractional domination number of G, denoted y ^(G), 
is the minimum, |gj, over all minimal dominating functions g. 

A real-valued function g: F(G) -> [0,1] is & packing function if, for every v G F ( G ) with 
g(v) < 1, there exists a vertex w G JV[v] where g(N[u]) - 1. Then the {upper) fractional packing 
number of G, denoted Py (G), is the maximum |g] such that g" is a maximal packing function. 

The fractional parameters are related by the following. 

Proposition 1.1: For every graph G, Pf(G) - y /-(G) (Domke [1]). 

The formula of Proposition 1.2 computes the fractional domination number for P2x Pn. No 
general formula is known for y f{Pm x Pn), for m>2, but fractional domination numbers for any 
graph may be computed using linear programming. 

Proposition 1.2: yf(P2 x Pn) - {n + l)l2 + §nl2\-\_nll\-l)l(2n + 2) =« /2 + fw/2]/(w + l). 

Proof: It has been shown that ^^ (P2 x i^) = |"/z / 2] = (n +1) / 2 when n = 1 (mod 2), and that 
^ r ( P 2 x P J = (w2 +2w)/2(w + l) when n ^ 0(mod2) (Hare [4]). 

Values of fractional domination numbers for Pm x Pn for several small (m,n) pairs may also 
be found in [4] and [5]. It would be interesting if a formula could be found for the arbitrary mxn 
complete grid graphs, as has been found for the 2-packing number [2]. In the remainder of this 
paper we develop upper and lower bounds for the fractional domination number of Pm x Pn.. 

2. BOUNDS FOR THE FRACTIONAL DOMINATION NUMBER 

Let Dm=3FlFm+F2Fm_l =3Fm+Fm_l, where D stands for "denominator." We denote a 
vertex in the /th row and j i h column of Gmn (= Pm x Pn) by v; ; . The following develops upper 
and lower bounds for y APmx Pn) which depend only on m. 
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Proposition 2.3: Let m > 2, n > 2,1 < j < n, and g(vt .) = i^iy_i+i I Dm• T n e n 

g(N[vlj]) = l=g(N[v2J). 

Proof: 
g(N[vu ,]) = g(yY y_i) + ̂ (vj j) + g(vj y+1) + #(v2 j) 

= 3F1Fm/Dm+F2Fm_1/Dm = l. 

= (FlFm+3F2Fm_l+F,Fm_2)/Dm. 

Since 3 / ^ , + F 2 i v ! = F,Fm + 3F2JFm_! + F3JFm_2, it follows that g(N[v2J]) = 1 By symmetry, 

g(N[vmj]) = g(N[v^lj]) = l 

Proposition 2.4: Let m> 3,n > 2,1 </ <m-1,1 < j <n, and gty j) = FjFm_i+l IDm. Then, 
g(N[vlj]) = g(N[vlJ]) = l. 

Proof: 
g(N[vij]) = g(vi_1j) + g(viJ_l)+g(vi!j) + g(vi!j+1) + g(vi+hJ) 

= (Fi-lFm-i+2 + ^FiFm-i+l + Fi+\Fm-i) >'Dm-

g(M?i+uj$ = «(v/>/) + ̂ (vw>y_1) + g(vI.+lfy) + g(v/+1>/+1) + g(v/+2iy) 

~ (FiFm-i+l + 3-^+l^m-l + Fi+2Fm-i-l) 'Dm-

Since ^ F ^ j + 3/;/v_,+1 +FMFm_i = FiFm_i+1+3Fi+1Fm_i +Fi+2Fm_i_1, it follows that 

From Proposition 2.3, g(iV[v2>y]) = 1, sog(N[vt y]) = 1 for all i, 1 < / < m. 

Theorem 2.5: Let Cm = g(Vlj) + g(v2j) + • • • + g(vmJ) where s(v,,y) = FiFm_i+1/Dm. Then, 
when m > 3, the sum of the function values over all vertices in column y is given by Cm I Dm where 
Cm = £^,m(F

i
F

m-i+i)Dm and yf(PmxPn)<nCm+cr, where cy <2[m/3]Fm/Dm. 

Proof: Since g(N[vUj]) = lfor 2<j<n-l, all vertices in columns 2 through w-1 are 
dominated. In order to dominate column 1, let g(yitl) be modified as follows: 

For \<i<m, let <r = max{g(vM ,,),£<>, ,7),#(vz+1,)}. 

Case 1. m = 0 mod 3. 
If / = 2 mod 3, then g{vt x) = FtFm_i+l IDm+a. 

Case 2. w = lmod3. 
If 2i = (m + l\ theng(viA) = 2FiFm_i+l/Dm. 
Else If [(/ = 2 mod 3) and (2/ < m +1)] or [(i = 0 mod 3) and (2/ > /w +1)], then 
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Case 3. m = 2 mod 3. 
If 2i = m, theng(viA) = 2FiFm_i+lIDm. 
Else If [{i = 2 mod 3) and (2/ < m)] or [(/ = 1 mod 3) and (2i - 2 > m)], then 
g(v,,i) = FiFm_M/Dm+a. 

Observe that this assignment produces g(N[vul]) > 1 for all vertices in column 1. To show 
that g is minimal, observe that g(N[vij]) = i for l<i<m and 2<j<n-l, except when 
8(y\,])*FiFm-i+\lDm. Thus, only the case when g(vul) *FtFm_i+l IDm must be examined. In 
the above procedure, each modification produces an assignment such that (̂A [̂vI._1>1]) = l, 
g(N[vi, i ]) = 1, or g(N[vi+l n ]) = 1. Thus, g is minimal. 

To also dominate the vertices of column n, let cy be twice the functional value added to 
column 1 by the above modification. It is straightforward to show by induction on /', 1 < / < m -1, 
that Fm = F^F^ + iyJv,.!. Thus, Fm > FMFm_t. Let j = i +1. Then Fm > FjFm_J+l, which 
yields 2[m/3](FmIDm)>cy. 

Such a minimal dominating function is given for P3 x Pn by: 

g(\j) = giv3,j) = 2/7, fori <j<n, 
g(v2,;) = 1 /7 , for 1 <7 <», and 
g(v2A) = g(v2,„) = 3/7. 

Thus, ^ / (P 3 xP„)<«(5 /7) + 4/7. 

3. BOUNDS FOR THE FRACTIONAL PACKING NUMBER 

From Proppositions 2.3 and 2.4 and the definition of fractional packing, it is clear that when 
g(vi,j) = FjFm_j+1/Dm for all / and j , then g is a maximal packing function and \g\-nCm. 
However, the following improved bounds are easily obtained. 

Proposition 3.6: 
Pf(P3xPn)>nC3 + 2/7, for«>3, C 3 =5/7 . 
Pf(P4xP„)>nC4 + 4/U, for»>4, C4 = 10/11. 
Pf(P5xP„)>nC5+ 8/IS, for«>5, C5=20/18. 
Pf(P6xPn)>nC6 + lS/29, forn>6, C6=38/29. 

Proof: The following assignments of g produce maximal packing functions. 

For P3xPn. 
giyUi) = s(\J = g(yxl) = g(vx„) = 3ii = FJD„ 

^( v 2 ,2) = ^(v2,»- i ) = 0, and 
g(vi,j) = FtFm-i+i I Ds» otherwise. 
Thus, Pf (P3 xPn)>n(5/7) + 2/7. 

For every vertex in rows 1 and 3, g[N(vi j)] = l, except for columns 1 and n. However, 
g[N(v2, i)] = g[N(v2, n) = 1, so g is maximal. 
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For P x P ' 
g(\i) = S(vl„) = g(v4,1) = g(v4J = 5/U = F5/D4, 
g<?2.i) = g(v2,„) = g(v3A) = g(v3i„) = 3/11 = F4/D4, 
g(v2,i) = g(v3,i) = g(v2,n-i) = g(v3,n-i) = °> and 
g(vi,j) = FiF»-i+i,D4> otherwise. 

For every vertex in rows 1 and 4, g[N(vtj)] = 1, so g is maximal. 
For P5 x Pn. 

givu) = g(\n) = g(v5.i) = g(v5.«) = */™ = F6'D5, 
^v 2 i I ) = ̂ (v2>„) = 5(v4il) = g(v4,„) = 5/18 = ^ /1 )5 , 
g(v2,i) = g(v2,n-i) = g(v4,2) = g(v4,n-i) = 0, and 
g(v,, j) = FiFm-,+\ IA, otherwise. 

For every vertex in rows 1, 3, and 5 except vertices v3 2 and v3„_,, g[N(vUj)] = \, so g is 
maximal. 

For P6 x Pn. 
gi\i) = g(\J = g(ve,i) = g(y6,n) = 13/29 = F7 ID6, 
^(v2,i) = ^(v2,n) = ^(v4,1) = ^(v4>„) = 8/29 = F6/JD6, 
g(V2,2) = g(V2,n-l) = g(V4,2) = g(V4,n~l) = °> 
^(V3,l) = ^(v3 ,„) = 8 / 2 9 , 

g(v4A) = g{vA,„) = H29, and 
g(v,,j) = F,Fm-M/D6, otherwise. 

For every vertex in rows 1, 3, 4, and 6 except v3 2, v4 2, v3n__x, and vAn_l,g[N{vi j)] = 1, so g is 
maximal. 

Theorem 3.7: When m>6,n>m, Pf(PmxPn)> nCm + 4(Fm_1 / Dm ). 

Proof: For .Pm x Pn: 

g ( v u ) = <?(vi,«) = sOVi) = <?Omj„) = Fm+1/Dm, 
#02,i) = g02,„) = g(vm_u) = ̂ (v„,_1;„) = Fm/Dm, 
g(V3,1) = #(V3, „ ) = g(Vm-2,1) = g(ym-2, n) = FmID,m 
g(v2,2) = g(vm-\,2) = ^(V2,n- i ) = £<>Vi,„-i) = °> and 
g(vij) = F

l
Fm-i+ilDm, otherwise. 

In column 1, g[N(v}A)] = g[N(v2A)] = g[N(vml)] = g[N(vm_x x)} = 1. For all vertices in column 
2 except v2 2, v3 2, vm_i 2> and v

m-i 2> g[^(vi,i)]= *• F°r a'l vertices in colums 3 through « - 3, 
g[-W(v/,;)] = 1. Thus, every vertex is adjacent to some vertex (possibly itself) with g[N(vij] = 1 
and g is maximal. Column summations yield a net gain of 4Fm_l I'Dm. 

Corollary 3.8: When m>6,n>m, then Pf(PmxPn)>mn/5 + (2n/5)(Fm/Dm) + 4(Fm^/Dm). 
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Proof: It is well known that, for m > 4, 

7 = 1 , W 

Then 
Pf(PmxPn)>nCm+4{Fm_JDm) 

= mn/5 + (2n/5)(FJDm) + 4(Fm„1/Dm). 

The recurrence Cm - Fm I Dm + Cm_x + Cm_2 follows immediately and, for large m, Cm is approxi-
mately ml 5 + 0.145. 

4. CONCLUDING REMARKS 

It has been shown in this paper that 

»(5/7) + 2/7<x/( JP3xP„)<»(5/7) + 4/7 , 
«(10/ll) + 4/11 < Yf{PA xP„)<«(10/ll) + 12/l l , 
«(20/18) + 8/18<^/(JP5xP„)<«(20/18) + 20/18, 

«(38/29) + 18/29</ / (P 6 xP„)<«(38/29) + 32/29 

and, for m>6,n>m, 

nGm+A{Fm_JDm)<yf{PmxPn)<nCm+2\ml3jFmIDml 

where Cm = S2=1, m ( ^ + 1 ) / Dm and Dm = 3Fm + F ^ . 

Although the methods of linear programming can be used to calculate y f for individual 
graphs, no exact construction is known for y f{Pm x Pn) for m > 2 Thus, the bounds presented in 
this paper provide a useful addition to our knowledge of domination parameters on grid graphs. 
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