FIBONACCI NUMBERS AND FRACTIONAL DOMINATION OF $P_{\mu} \times P_{\mu}$

E. O. Hare

Clemson University, Clemson, SC 29634-1906 (Submitted April 1992)

1. INTRODUCTION

The product of two paths, $P_m \times P_n$, is also known as the $m \times n$ complete grid graph, $G_{m,n}$, having vertex set $Z_m \times Z_n$, where Z_k denotes the set $\{1, 2, ..., k\}$. Two vertices, (i, j) and (r, s), are adjacent when |i-r|+|j-s|=1. Thus, |V|=mn and |E|=2mn-(m+n).

Let G = (V, E) be a graph and $v \in V(G)$. Then the closed neighborhood of v, denoted N[v], is the set $\{v\} \cup \{u \in V(G) | uv \in E(G)\}$.

The definition of fractional domination, as introduced by Hedetniemi et al. [3] is as follows: If g is a function mapping the vertex set, V(G), into some set of real numbers, then for S a subset of V(G), let $g(S) = \sum g(v)$ over all $v \in S$. Let $|g| = g(V(G)) = g(v_1) + g(v_2) + \dots + g(v_n)$. A realvalued function $g:V(G) \rightarrow [0, 1]$ is a *fractional dominating function* if for every $v \in V(G)$, $g(N[v]) \ge 1$. A dominating function is *minimal* if for every $v \in V(G)$ with g(v) > 0, there exists a vertex $u \in N[v]$ such that g(N[u]) = 1. The *fractional domination number* of G, denoted $\gamma_f(G)$, is the minimum, |g|, over all minimal dominating functions g.

A real-valued function $g:V(G) \to [0,1]$ is a *packing function* if, for every $v \in V(G)$ with g(v) < 1, there exists a vertex $u \in N[v]$ where g(N[u]) = 1. Then the *(upper) fractional packing number* of G, denoted $P_f(G)$, is the maximum |g| such that g is a maximal packing function.

The fractional parameters are related by the following.

Proposition 1.1: For every graph G, $P_f(G) = \gamma_f(G)$ (Domke [1]).

The formula of Proposition 1.2 computes the fractional domination number for $P_2 \times P_n$. No general formula is known for $\gamma_f(P_m \times P_n)$, for m > 2, but fractional domination numbers for any graph may be computed using linear programming.

Proposition 1.2:
$$\gamma_f(P_2 \times P_n) = (n+1)/2 + (\lceil n/2 \rceil - \lfloor n/2 \rfloor - 1)/(2n+2) = n/2 + \lceil n/2 \rceil/(n+1).$$

Proof: It has been shown that $\gamma_f(P_2 \times P_n) = \lceil n/2 \rceil = (n+1)/2$ when $n \equiv 1 \pmod{2}$, and that $\gamma_f(P_2 \times P_n) = (n^2 + 2n)/2(n+1)$ when $n \equiv 0 \pmod{2}$ (Hare [4]).

Values of fractional domination numbers for $P_m \times P_n$ for several small (m, n) pairs may also be found in [4] and [5]. It would be interesting if a formula could be found for the arbitrary $m \times n$ complete grid graphs, as has been found for the 2-packing number [2]. In the remainder of this paper we develop upper and lower bounds for the fractional domination number of $P_m \times P_n$.

2. BOUNDS FOR THE FRACTIONAL DOMINATION NUMBER

Let $D_m = 3F_1F_m + F_2F_{m-1} = 3F_m + F_{m-1}$, where *D* stands for "denominator." We denote a vertex in the *i*th row and *j*th column of $G_{m,n} (= P_m \times P_n)$ by $v_{i,j}$. The following develops upper and lower bounds for $\gamma_f (P_m \times P_n)$ which depend only on *m*.

1994]

Proposition 2.3: Let m > 2, n > 2, 1 < j < n, and $g(v_{i,j}) = F_i F_{m-i+1} / D_m$. Then $g(N[v_{1,j}]) = 1 = g(N[v_{2,j}]).$

Proof:

$$g(N[v_{1, j}]) = g(v_{1, j-1}) + g(v_{1, j}) + g(v_{1, j+1}) + g(v_{2, j})$$
$$= 3F_1F_m / D_m + F_2F_{m-1} / D_m = 1.$$

$$g(N[v_{2,j}]) = g(v_{1,j}) + g(v_{2,j-1}) + g(v_{2,j}) + g(v_{2,j+1}) + g(v_{3,j})$$

= $(F_1F_m + 3F_2F_{m-1} + F_3F_{m-2}) / D_m.$

Since $3F_1F_m + F_2F_{m-1} = F_1F_m + 3F_2F_{m-1} + F_3F_{m-2}$, it follows that $g(N[v_{2,j}]) = 1$. By symmetry,

$$g(N[v_{m,j}]) = g(N[v_{m-1,j}]) = 1.$$

Proposition 2.4: Let m > 3, n > 2, 1 < i < m-1, 1 < j < n, and $g(v_{i,j}) = F_i F_{m-i+1} / D_m$. Then, $g(N[v_{1,j}]) = g(N[v_{i,j}]) = 1$.

Proof:

$$g(N[v_{i,j}]) = g(v_{i-1,j}) + g(v_{i,j-1}) + g(v_{i,j}) + g(v_{i,j+1}) + g(v_{i+1,j})$$

= $(F_{i-1}F_{m-i+2} + 3F_iF_{m-i+1} + F_{i+1}F_{m-i}) / D_m.$
$$g(N[v_{i+1,j}]) = g(v_{i,j}) + g(v_{i+1,j-1}) + g(v_{i+1,j}) + g(v_{i+1,j+1}) + g(v_{i+2,j})$$

= $(F_iF_{m-i+1} + 3F_{i+1}F_{m-1} + F_{i+2}F_{m-i-1}) / D_m.$

Since $F_{i-1}F_{m-i+2} + 3F_iF_{m-i+1} + F_{i+1}F_{m-i} = F_iF_{m-i+1} + 3F_{i+1}F_{m-i} + F_{i+2}F_{m-i-1}$, it follows that $g(N[v_{i,j}]) = g(N[v_{i+1,j}]).$

From Proposition 2.3, $g(N[v_{2,j}]) = 1$, so $g(N[v_{i,j}]) = 1$ for all $i, 1 \le i \le m$.

Theorem 2.5: Let $C_m = g(v_{1,j}) + g(v_{2,j}) + \dots + g(v_{m,j})$ where $g(v_{i,j}) = F_i F_{m-i+1} / D_m$. Then, when $m \ge 3$, the sum of the function values over all vertices in column *j* is given by C_m / D_m where $C_m = \sum_{i=1,m} (F_i F_{m-i+1}) D_m$ and $\gamma_f (P_m \times P_n) \le n C_m + c_\gamma$, where $c_\gamma \le 2[m/3] F_m / D_m$.

Proof: Since $g(N[v_{i,j}]) = 1$ for $2 \le j \le n-1$, all vertices in columns 2 through n-1 are dominated. In order to dominate column 1, let $g(v_{i,1})$ be modified as follows:

For 1 < i < m, let $\sigma = \max\{g(v_{i-1,j}), g(v_{i,j}), g(v_{i+1,j})\}$.

Case 1. $m \equiv 0 \mod 3$. If $i \equiv 2 \mod 3$, then $g(v_{i,1}) = F_i F_{m-i+1} / D_m + \sigma$.

Case 2. $m \equiv 1 \mod 3$.

If 2i = (m+1), then $g(v_{i,1}) = 2F_iF_{m-i+1}/D_m$. Else If $[(i \equiv 2 \mod 3) \text{ and } (2i \le m+1)]$ or $[(i \equiv 0 \mod 3) \text{ and } (2i \ge m+1)]$, then $g(v_{i,1}) = F_iF_{m+i+1}/D_m + \sigma$.

[FEB.

Case 3. $m \equiv 2 \mod 3$. If 2i = m, then $g(v_{i,1}) = 2F_iF_{m-i+1} / D_m$. Else If $[(i \equiv 2 \mod 3) \text{ and } (2i < m)]$ or $[(i \equiv 1 \mod 3) \pmod (2i - 2 > m)]$, then $g(v_{i,1}) = F_iF_{m-i+1} / D_m + \sigma$.

Observe that this assignment produces $g(N[v_{i,1}]) \ge 1$ for all vertices in column 1. To show that g is minimal, observe that $g(N[v_{i,j}]) = 1$ for $1 \le i \le m$ and $2 \le j \le n-1$, except when $g(v_{1,j}) \ne F_i F_{m-i+1} / D_m$. Thus, only the case when $g(v_{i,1}) \ne F_i F_{m-i+1} / D_m$ must be examined. In the above procedure, each modification produces an assignment such that $g(N[v_{i-1,1}]) = 1$, $g(N[v_{i,1}]) = 1$, or $g(N[v_{i+1,1}]) = 1$. Thus, g is minimal.

To also dominate the vertices of column *n*, let c_{γ} be twice the functional value added to column 1 by the above modification. It is straightforward to show by induction on *i*, 1 < i < m-1, that $F_m = F_{i+1}F_{m-i} + F_iF_{m-i-1}$. Thus, $F_m > F_{i+1}F_{m-i}$. Let j = i+1. Then $F_m > F_jF_{m-j+1}$, which yields $2[m/3](F_m/D_m) \ge c_{\gamma}$.

Such a minimal dominating function is given for $P_3 \times P_n$ by:

$$g(v_{i,j}) = g(v_{3,j}) = 2/7$$
, for $1 \le j \le n$,
 $g(v_{2,j}) = 1/7$, for $1 < j < n$, and
 $g(v_{2,1}) = g(v_{2,n}) = 3/7$.

Thus, $\gamma_f (P_3 \times P_n) \le n(5/7) + 4/7$.

3. BOUNDS FOR THE FRACTIONAL PACKING NUMBER

From Proppositions 2.3 and 2.4 and the definition of fractional packing, it is clear that when $g(v_{i,j}) = F_i F_{m-i+1} / D_m$ for all *i* and *j*, then *g* is a maximal packing function and $|g| = nC_m$. However, the following improved bounds are easily obtained.

Proposition 3.6:

$$\begin{split} P_f(P_3 \times P_n) &\geq nC_3 + 2/7, & \text{for } n \geq 3, \ C_3 = 5/7. \\ P_f(P_4 \times P_n) &\geq nC_4 + 4/11, & \text{for } n \geq 4, \ C_4 = 10/11. \\ P_f(P_5 \times P_n) &\geq nC_5 + 8/18, & \text{for } n \geq 5, \ C_5 = 20/18. \\ P_f(P_6 \times P_n) &\geq nC_6 + 18/29, & \text{for } n \geq 6, \ C_6 = 38/29. \end{split}$$

Proof: The following assignments of g produce maximal packing functions. For $P_3 \times P_n$:

> $g(v_{1,1}) = g(v_{1,n}) = g(v_{3,1}) = g(v_{3,n}) = 3/7 = F_4 / D_3,$ $g(v_{2,2}) = g(v_{2,n-1}) = 0, \text{ and}$ $g(v_{i,j}) = F_i F_{m-i+1} / D_3, \text{ otherwise.}$ Thus, $P_f(P_3 \times P_n) \ge n(5/7) + 2/7.$

For every vertex in rows 1 and 3, $g[N(v_{i,j})] = 1$, except for columns 1 and *n*. However, $g[N(v_{2,1})] = g[N(v_{2,n}) = 1$, so g is maximal.

1994]

For $P_4 \times P_n$:

$$g(v_{1,1}) = g(v_{1,n}) = g(v_{4,1}) = g(v_{4,n}) = 5/11 = F_5/D_4,$$

$$g(v_{2,1}) = g(v_{2,n}) = g(v_{3,1}) = g(v_{3,n}) = 3/11 = F_4/D_4,$$

$$g(v_{2,2}) = g(v_{3,2}) = g(v_{2,n-1}) = g(v_{3,n-1}) = 0, \text{ and}$$

$$g(v_{i,i}) = F_i F_{m-i+1}/D_4, \text{ otherwise.}$$

. . . .

For every vertex in rows 1 and 4, $g[N(v_{i,j})] = 1$, so g is maximal.

For $P_5 \times P_n$:

$$g(v_{1,1}) = g(v_{1,n}) = g(v_{5,1}) = g(v_{5,n}) = 8/18 = F_6 / D_5,$$

$$g(v_{2,1}) = g(v_{2,n}) = g(v_{4,1}) = g(v_{4,n}) = 5/18 = F_5 / D_5,$$

$$g(v_{2,2}) = g(v_{2,n-1}) = g(v_{4,2}) = g(v_{4,n-1}) = 0, \text{ and}$$

$$g(v_{i,i}) = F_i F_{m-i+1} / D_5, \text{ otherwise.}$$

For every vertex in rows 1, 3, and 5 except vertices $v_{3,2}$ and $v_{3,n-1}$, $g[N(v_{i,j})] = 1$, so g is maximal.

For $P_6 \times P_n$:

$$g(v_{1,1}) = g(v_{1,n}) = g(v_{6,1}) = g(v_{6,n}) = \frac{13}{29} = F_7 / D_6,$$

$$g(v_{2,1}) = g(v_{2,n}) = g(v_{4,1}) = g(v_{4,n}) = \frac{8}{29} = F_6 / D_6,$$

$$g(v_{2,2}) = g(v_{2,n-1}) = g(v_{4,2}) = g(v_{4,n-1}) = 0,$$

$$g(v_{3,1}) = g(v_{3,n}) = \frac{8}{29},$$

$$g(v_{4,1}) = g(v_{4,n}) = \frac{7}{29},$$
 and

$$g(v_{1,1}) = F_1 F_{m-1+1} / D_6,$$
 otherwise.

For every vertex in rows 1, 3, 4, and 6 except $v_{3,2}, v_{4,2}, v_{3,n-1}$, and $v_{4,n-1}, g[N(v_{i,j})] = 1$, so g is maximal.

Theorem 3.7: When $m > 6, n \ge m, P_f(P_m \times P_n) \ge nC_m + 4(F_{m-1}/D_m).$

Proof: For $P_m \times P_n$:

$$g(v_{1,1}) = g(v_{1,n}) = g(v_{m,1}) = g(v_{m,n}) = F_{m+1} / D_m,$$

$$g(v_{2,1}) = g(v_{2,n}) = g(v_{m-1,1}) = g(v_{m-1,n}) = F_m / D_m,$$

$$g(v_{3,1}) = g(v_{3,n}) = g(v_{m-2,1}) = g(v_{m-2,n}) = F_m / D_m,$$

$$g(v_{2,2}) = g(v_{m-1,2}) = g(v_{2,n-1}) = g(v_{m-1,n-1}) = 0, \text{ and}$$

$$g(v_{i,i}) = F_i F_{m-i+1} / D_m, \text{ otherwise.}$$

In column 1, $g[N(v_{1,1})] = g[N(v_{2,1})] = g[N(v_{m,1})] = g[N(v_{m-1,1})] = 1$. For all vertices in column 2 except $v_{2,2}, v_{3,2}, v_{m-1,2}$, and $v_{m-2,2}, g[N(v_{i,2})] = 1$. For all vertices in colums 3 through n-3, $g[N(v_{i,j})] = 1$. Thus, every vertex is adjacent to some vertex (possibly itself) with $g[N(v_{i,j}]] = 1$ and g is maximal. Column summations yield a net gain of $4F_{m-1}/D_m$.

Corollary 3.8: When $m > 6, n \ge m$, then $P_f(P_m \times P_n) \ge mn/5 + (2n/5)(F_m/D_m) + 4(F_{m-1}/D_m)$.

FEB.

Proof: It is well known that, for $m \ge 4$,

$$C_m = \sum_{i=1,m} (F_i F_{m-i+1}) / D_m = ((3m+2)F_m + mF_{m-1}) / 5 = (m(3F_m + F_{m-1}) + 2F_m) / 5.$$

Then

$$P_f(P_m \times P_n) \ge nC_m + 4(F_{m-1}/D_m) = mn/5 + (2n/5)(F_m/D_m) + 4(F_{m-1}/D_m).$$

The recurrence $C_m = F_m / D_m + C_{m-1} + C_{m-2}$ follows immediately and, for large *m*, C_m is approximately m/5 + 0.145.

4. CONCLUDING REMARKS

It has been shown in this paper that

$$n(5/7) + 2/7 \le \gamma_f (P_3 \times P_n) \le n(5/7) + 4/7,$$

$$n(10/11) + 4/11 \le \gamma_f (P_4 \times P_n) \le n(10/11) + 12/11,$$

$$n(20/18) + 8/18 \le \gamma_f (P_5 \times P_n) \le n(20/18) + 20/18,$$

$$n(38/29) + 18/29 \le \gamma_f (P_6 \times P_n) \le n(38/29) + 32/29$$

and, for $m > 6, n \ge m$,

$$nC_m + 4(F_{m-1}/D_m) \le \gamma_f(P_m \times P_n) \le nC_m + 2\lceil m/3 \rceil (F_m/D_m),$$

where $C_m = \sum_{i=1, m} (F_i F_{m-i+1}) / D_m$ and $D_m = 3F_m + F_{m-1}$.

Although the methods of linear programming can be used to calculate γ_f for individual graphs, no exact construction is known for $\gamma_f (P_m \times P_n)$ for m > 2 Thus, the bounds presented in this paper provide a useful addition to our knowledge of domination parameters on grid graphs.

ACKNOWLEDGMENT

The author wishes to express appreciation to the referee for several helpful suggestions.

REFERENCES

- 1. G. S. Domke. "Variations of Colorings, Coverings, and Packings of Graphs." Ph.D. diss., Dept. Math. Sci., Clemson University, 1988.
- 2. D. C. Fisher. "The 2-Packing Number of Complete Grid Graphs." Submitted to Ars. Combinatoria.
- 3. G. Fricke, S. T. Hedetniemi, R. Laskar, & A. Majumdar. "Fractional Domination in Graphs." Unpublished manuscript, 1988.
- 4. E. O. Hare. "k-Weight Domination and Fractional Domination of $P_m \times P_n$." Cong. Num. 78 (1990):71-80.
- 5. L. S. Stewart & E. O. Hare. "Fractional Domination of $P_m \times P_n$." Cong. Num. 91 (1992):35-42.

** ** **