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1. GAME THEORY BACKGROUND 

While the principal results of this paper seem to us to be of interest in their own right, and 
can be understood with no reference to game theory, the problems addressed arose in a game 
theory setting, and their solution has important consequences for the analysis of Silverman games. 
It seems appropriate therefore to sketch briefly the game theory background. Silverman games 
are two-person, zero-sum games in which, roughly speaking, the higher bid wins, unless it is too 
much higher than the other, in which case it loses. More precisely, let Sl and Su be sets of posi-
tive real numbers, and Tand v be parameters with T>\ and v> 0. The sets Sl andSn are the 
pure strategy sets for Players I and II, respectively. Each player chooses a number from his 
strategy set, and the higher number wins 1, unless it is at least T times as large as the other, in 
which case it loses v. The parameters T and v are referred to as the threshold and the penalty, 
respectively. If SY = Slh the game is symmetric, and in this case, if optimal strategies exist they 
are the same for both players, and the game value is 0. 

The prototype games are attributed to David Silverman, although the earliest published 
mention of such a game of which we are aware is by Herstein and Kaplansky ([3], p. 212). The 
symmetric game on an open interval was analyzed by R. J. Evans [1] for arbitrary T and v, and the 
symmetric game on discrete sets by Evans and Heuer [2]. An analogous symmetric game on 
[1, oo) is examined in [5]. Discrete games with Sl n £ n = 0 are examined in [4] and [8]. In [6] it 
is shown that when v > 1 Silverman games reduce by dominance to games on bounded sets, and in 
[7] this and other types of dominance are used to reduce discrete games with v > l to finite 
games, and their payoff matrices have a simple characteristic form. 

Many semi-reduced games can be further reduced in the sense that there still are proper sub-
sets Wx and Wu of the strategy sets, with the property that optimal mixed strategies for the game 
on Wl x Wu are optimal for the full game. This further reduction leads to games some of which 
are 2 x 2 and the rest of which fall into eight families, four of even-order games and four of odd-
order games (see [7]). It was our conjecture that when v > 1, no further reduction of any of these 
games is possible. This would mean that optimal mixed strategies for such a reduced game are 
minimal optimal strategies for the original game. We shall show here that, for the odd-order 
games, this is indeed the case, and using similar techniques we obtain explicitly the unique optimal 
mixed strategies and game values for these reduced games. The even-order cases will be treated 
in a forthcoming paper. 
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2* THE ASSOCIATED MATRICES 

Let B denote the payoff matrix of our reduced game and Kthe game value. Then B is always 
square, and as discussed in Section 13 of [7], the game is not further reducible if and only if there 
is a unique probability vector P, with all components positive, such that 

PB = (V,V,...,V). (2.1a) 

In this case there is also a unique probability vector Q such that 

and P and Q are the unique optimal mixed strategy vectors for the row player and column player, 
respectively. (We are writing vectors as row vectors.) 

Let B.j denote the jxh column of B. IfB is In +1by In +1, then (2. la) is equivalent to 

PB.j=V for/=l,2,...,2#i + l. 

With the understanding that P is to be a probability vector, this, in turn, is equivalent to 
2«+l 

P(B.j -B.J+l) = 0 for/ = 1,2,..., 2w, and ]T/?. - 1, with eachpi > 0. 

(2.2) 

(2.3) 
y=i 

Now let 4 be the 2?2 +1 by In +1 matrix, the /* row of which is (B.,-B,+l)' for / = 1, 2, ..., 
2n, and the (2« + l)th row of which is (1, 1, ..., 1). Then (2.3) is equivalent to 

AP'= (0,0,...,0,1)', (2.4) 

which has a unique solution if and only if A is nonsingular. Thus, it suffices to show that A is 
nonsingular and that a probability vector P with all components positive exists, satisfying (2.4). 

The four families of odd-order payoff matrices B and the associated matrices A are illustrated 
below. The variable x is 1 + v, and with v > 1 we have x > 2. Types (i), (ii), (iii), and (iv) here 
correspond to (8.0.54), (8.0.55), (8.0.5Q, and (8.0.5D), respectively, in [7]. The main diagonal 
and first superdiagonal of A consist entirely of Is, with two exceptions. In column a + 1, the pair 
(J) occurs in place of (J), and in column n + a + 2, (§) occurs. In general, the matrix A of type (i) 
has a columns preceding the first irregular one, then d regular columns, a central column, a regu-
lar columns, the second irregular one, and d regular ones, for a total of 2n +1 = 2a + 2d + 3 
columns. 

B-

( 0 
1 
1 
1 
1 
1 

-v 
- V 

-v 

-1 
0 
1 
1 
1 
1 
1 

-v 
- V 

-1 -1 
-1 -1 
-1 -1 
0 -1 
1 0 
1 1 
1 1 
1 1 
1 1 

-v 1 
-v -v -v -v -v 

-v -v -v 

V V V 
V V V 

V V 
V 

-1 
-1 
-1 
-1 
-1 
0 
1 

0 -
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A = 

1 1 0 0 0 0 

0 0 0 

0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 

-x 0 0 
0 0 0 1 1 0 0 0 0 
0 
X 
0 
0 
0 
0 
1 

0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 

-X 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
1 

1 
0 
0 
0 
0 

-X 
1 

1 
1 
0 
0 
0 
0 
1 

0 
1 
1 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
2 
0 
1 

0 
0 
0 
0 
1 
1 
1 

-x 
0 
0 
0 
0 
1 
1 

Type (i), parameters a > 0,d>0,n = a+d + l. Illustrated with a = 2,d = 2. 

In the matrix A of type (ii), there are three irregular columns. The parameters here are c and 
d, and the pattern is c + 1 regular columns, the column with the (§), d regular columns, the central 
column, c regular columns, two columns with (fj in place of []], and d regular columns. We illus-
trate it here with c=\, d = 2;n = c+d + 2 = 5, so again B and A are 11x11. 

B = 

0 -1 
0 
1 
1 
1 
1 

-v 1 
-v -v 
-v -v -v 
-v -v -v -V - V - V - V - V 

-1 
-1 
-1 
0 
1 
1 
1 
1 
1 

V V V V 
V V V V 

V V V 
V V 

V 

0 -

0 -
1 0 

A = 

1 1 0 0 0 0 0 0 0 0̂ 1 
0 1 2 0 0 0 0 -x 0 0 0 
0 0 0 1 0 0 0 0 -x 0 0 
0 
0 
X 
0 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
0 
1 

1 
0 
0 
0 
0 

-X 
0 
1 

1 
1 
0 
0 
0 
0 

-X 
1 

0 
1 
1 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
0 
1 

0 
0 
0 
0 
2 
0 
0 
1 

0 
0 
0 
0 
0 
2 
0 
1 

-x 
0 
0 
0 
0 
1 
1 
1 

0 
-X 

0 
0 
0 
0 
1 
1 

Type (ii), parameters c>0,d>0,n = c + d + 2. Illustrated with c=l,d = 2. 

We illustrate type (iii) below. 
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( o 

B = 
-v 
-v 
-v 
-v 
-v 

A = 

-1 
0 

- v 1 1 
- v - v 1 
-V -V - V 
-v - v -v -v 

V V V 
V V V 

-1 v v 
V 

0 0 0 0 - x 
2 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 

0 0 

0 -
1 < 

0 0 0^ 

0 0 

0 
X 
0 
0 
0 
0 
1 

0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
1 

0 
0 
0 
0 

-x 
0 
1 

1 
0 
0 
0 
0 

- x 
1 

1 
1 
0 
0 
0 
0 
1 

0 
1 
1 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
2 
0 
1 

0 
0 
0 
0 
1 
1 
1 

- x 
0 
0 
0 
0 
1 
1 

Type (Hi), parameters a>0,h>0;n = a + h + 2. Illustrated with a = 2,b = l. 

In the matrix A of type (iii), shown above, there are again three irregular columns. The 
parameters are a and b7 and the pattern of columns is: a regular columns, two columns with ftl in 
place of fj], b regular columns, the central column, a regular, one with (°) and b + 1 regular, 

Finally, in matrix^ of type (iv), there are two irregular columns. The parameters are denoted 
c and b, and the pattern of columns is c + 1 regular, one with fgj ? b regular, the central column, c 
regular columns, one with f§], and b + 1 regular. We illustrate type (iv) below, with c = 2, b - 1; 
w = c + 6 + 2 = 5. 

B-
—v 
-v 
-v 
-v 
—v 

- 1 
0 
1 

.1 
1 
1 
1 

- V 
- v 
- V 
- v 

- 1 
- 1 

0 
1 
1 
1 
1 
1 

- v 
-v 
-v 

1 
1 
1 
1 

-v 
-v 
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A = 

1 0 0 0 0 

0 0 

> 0 0 0\ 
0 0 0 

0 0 0 0 -x 0 0 
1 0 0 0 0 
i : 

0 
0 

-x 
0 
0 
0 
0 
1 

0 
0 
0 

-x 
0 
0 
0 
1 

0 
0 
0 
0 

-X 
0 
0 
1 

0 
0 
0 
0 
0 

-X 
0 
1 

1 
1 
0 
0 
0 
0 

-X 
1 

0 
1 
1 
0 
0 
0 
0 
1 

0 
0 
1 
1 
0 
0 
0 
1 

0 
0 
0 
1 
1 
0 
0 
1 

0 
0 
0 
0 
0 
2 
0 
1 

-x 
0 
0 
0 
0 
1 
1 
1 

0 
-X 

0 
0 
0 
0 
1 
1 

Type (iv), parameters c > 0,b>0;n = c + b + 2. Illustrated with c = 2,b = 1. 

Main Theorem: For x > 2, every matrix in these four two-parameter families is nonsingular, and 
the unique vector P satisfying (2.4) has all components positive. 

When the diagonal of the payoff matrix B consists entirely of zeros the game is symmetric, 
and has been shown in [2] to have a unique optimal mixed strategy. It follows in that case that 
the associated matrix of (2.4), which we denote A*, is nonsingular. This matrix A* is like those in 
the four families above, but without the irregularities; i.e., the main diagonal and the first super-
diagonal consist entirely of Is. We shall in each instance prove that A is nonsingular by exhibiting 
a matrix D such that AD- A*, and prove that a completely mixed (all components positive) 
vector P satisfying (2.4) exists by exhibiting it. The task of obtaining such a D is lightened sub-
stantially by the observation that in each of the four classes, the matrix A differs from A* in at 
most two columns. It suffices, therefore, to show that these columns of A* lie in the column 
space of A, and we accomplish this by producing columns Dmj such that AD.j = A* for the appro-
priate j . 

We illustrate here using the case a = d = 1 in type (i). Then n = 3, and the matrices A and A* 
are 7x7. 

A = 

1 
0 
0 

-x 
0 
0 
1 

2 
0 
0 
0 

-x 
0 
1 

0 
1 
1 
0 
0 

-x 
1 

0 
0 
1 
1 
0 
0 
1 

-x 
0 
0 
1 
1 
0 
1 

0 
-x 

0 
0 
0 
2 
1 

0] 
0 

-x 
0 
0 
1 
1 

This matrix differs from A* only in columns 2 (= a +1) and 6 (= n + a + 2). The column Da+l 

given by (4.0.2), and in this illustration it is 

f -2(x + 2)T0+x(x + 2)7;+2 ^ 
x(x + 2)E2 +1 

2 

IS 

D2 = 
-2x(x + 2)El + x1 (x + 2)E_{ + x 
-2x(x + 2)E0 + x2 (x + 2)E0 + x 
-2x(x + 2)E_l + x2 (x + 2)El + x 

-(x + 2)T2 + l 
-2(x + 2)71 + x(x + 2)r0+2 
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If A = x(x + 2)R2 [see (4.0.1)], the reader may verify, using identities (3.2), (3.0.5), (3.0.3), (3.8), 
and (3.9), and particular values of En and Tn given by (3.0.10) and (3.0.13), that AD2 = AA*2, 
where A?2 = (1,1, 0, 0, - x, 0, l)f (This is then a special case of Theorem 4.1.) 

3. THE POLYNOMIAL SEQUENCES 

We shall describe the matrix D in terms of six Fibonacci-like sequences of polynomials, and 
use Fibonacci-like properties of these sequences to prove that AD = A*. Each sequence is a par-
ticular solution to the recursion 

Ym+1 = (x2-2)Ym-Ym_1 + C, (3.0.1) 

where the constant C is 0, 1, or 2. For some earlier work on sequences generated by a recursion 
like (3.0.1) without the (x2 - 2 ) coefficient (see [9] and [10]). 

Define polynomial sequences Em,Rm,Gm,Tm,Hm, and Km as follows: 

E0 = l,E1=x2-1, Em+l = (x2 -2)Em -E^ +1. (3.0.2) 

Rm = Em-Em_l. (3.0.3) 

G^K-K-v (3.0.4) 
Tm=Em+Em_v (3.0.5) 

Hm=Rm+Rm_l= Em-Em_2 = Tm- Tm_v (3.0.6) 
Km=Hm-Hm-l=R

m-Rm-2=Gm+Gm-l = Tm-2Tm-l+Tm-2- ( 3 . 0 . 7 ) 

In (3.0.6) and (3.0.7) the first equality is to be understood as the definition; the others follow 
immediately. One sees further at once that 

R„, Gm, Hm, and£m satisfy (3.0.1) with C = 0, (3.0.8) 
and that 

Tm satisfies (3.0.1) with C = 2. (3.0.9) 

The recursion (3.0.1) can be used to extend the sequence in both directions, and we regard 
each of the sequences as being defined for all integers m. From the recursions, one finds readily 
the following: 

£_, = E_2 = 0, E_3 =E0-l, andE_m = Em_v (3.0.10) 
R, = 1, R_, = 0, R_2 = - 1 , andR_m = -Rm_2. (3.0.11) 

G0 = G_l = l,andG_m = Gm_l. (3.0.12) 
T0 = 1, 71, = 0, T_2 = 1, and T_m = Tm_2. (3.0.13) 
H0 = 1, H_, = - 1 , andH_m = -Hm_v (3.0.14) 

Kx=x2-2, K0 = 2, mdK_m=Km. (3.0.15) 

Theorem 3.1: Every polynomial Em with m > 0 takes only positive values for x > 2. The same is 
true of each of the other sequences defined by (3.0.2) to (3.0.7). 
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Proof: It is a routine exercise to prove by induction that Em+l >Em>0forx>2 and all m. 
The same goes for each of the other sequences. 

Following are some further properties of these polynomials that we will find useful. 

x2Em = Tm + Tm+1-\. (3.2) 

This is immediate from (3.0.2) and (3.0.5). 
Similarly, from the recursion (3.0.8) for Gm and (3.0.7), we have 

x2Gm = Km+1+Km, (3.3) 

and from the recursion (3.0.8) for Rm and (3.0.6), 

x2Rm = Hm+l + Hm. (3.4) 

From (3.0.8) and (3.0.4) we obtain 

(x2-4)R„,=Gm+1-Gm, (3.5) 

and from (3.0.2), (3.0.3), and (3.0.4), we have 

Similarly we obtain 
(x2-4)Em + l = Gm+l. (3.6) 

(x2-4)Tm+2 = Km+1. (3.7) 

From (3.0.9) we have that (x2 -2)Tt - TM - Tt_x = -2. Upon summing this for 0 < /' < m, adding 
Tm+l -Tm-\ to both sides, and using (3.0.13), we obtain 

(x2~4)^T1 = Tm+1-Tm-2m-3. (3.8) 
/=0 

In exactly the same way, using (3.0.2) and (3.0.10), we obtain 
m 

(x2 -4)£Et = Em+l -Em-m-2. (3.9) -2 _ 
7=0 

Theorem 3.10: For all integers r and m, 

GrHm+GmHr=2Rr+m. (3.10.1) 

Proof: For fixed r, both members are sequences indexed by m satisfying the homogeneous 
difference equation (3.0.1), as noted in (3.0.8). It will suffice, therefore, to show equality in 
(3.10.1) for m =-I and m = 0. But from (3.0.4) and (3.0.6) we have -G^H^IR^ and 
Gr +Hr = 2R,, which, in view of (3.0.12) and (3.0.14), establishes (3.10.1) for m = -1 and m = 0. 

Theorem 3.11: For all integers r and m, 

GrRm+GmRr_l=Rr+m. (3.11.1) 

Proof: This is proved in the same way as (3.10), using (3.0.4). 
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In much the same way, one shows 

^r^-m ~ ̂ r-lKn-1 = Gr+m ? 

K^m-Ki-l^r = Rr+m> 

Kr+lHm +KmHr = X K+m> 

GrHm - GmHr = 2Rm_r_1, 

G^ - G ^ ^ . ! = Rm_r, 

GrRm ~ (jr+i-Kyn-i ~ Gr_m, 

RrGm — Rmijr — Rr_m_l, 

K^m+l ~*\n^r+l = ^^r-m-V 

(3.12) 

(3.13) 

(3.14) 
(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Many further identities of this type could be given, but these are the ones used in the 
remainder of the paper. 

4. GAMES OF TYPE (I) 

Suppose that 4̂ is a matrix of type (i) with parameters a and d. Then A is 2n + lx2n + l, 
where n = a + d + l. To show that there is a matrix D such that AD = A*, as discussed in Section 
2, is equivalent to showing that each column of A* is in the column space of A. However, with 
the exception of the two irregular columns, every column of A is itself a column of A*, so we 
have only to show that columns a + l and n + a + 2 of A* are in the column space of A. Let D.j 
and A*- denote the 7th column of D and A*, respectively. What we shall actually exhibit are 
columns D , such that AD, = M*, for /' = a +1 and n + a + 2, where 

A = x(x + 2)Rn_1 (n = a + d + l). (4.0.1) 

This suffices, in view of the fact that, by Theorem 3.1, A > 0 for x > 2. 
The column D.a+l is defined as follows: 

4 , a+i = -2(x + 2)Ta_t + x(x + 2)Tn_aH_2 +2 for 1 < 1 < a; 

dj}a+1 = -2x(x + 2)En+a_j+x2(x + 2)Ej_a_3-¥x for a+ 2 <i <n + a + l; (4.0.2) 
<tn+a+2,a+l= - ( * + 2 ) 1 ^ + 1; 

^, f l + i="2(x + 2)r2wffl+1_/+x(x + 2)3;_w_fl.3+2 forw + a + 3 < / < 2 / i + l. 

Theorem 4.1: Let 4̂ be a matrix of type (i) as described in Section 2, with parameters a and <i. 
With Z).fl+1, A, and A* as defined above, we have 

AD.a+l = AA:+1. (4.1.1) 

Proof: The column 4^+i has Is in rows a, a + l, and 2w + l , -x in roww + a + 1, and all 
other elements are 0. Thus, we need to show that the following equations are satisfied: 
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" / , a+l + " / + 1 , a+l X"n+i+l, a+.i ~" ^ 

" a , a+l + ^ " a + 1 , a+l ~~ X " « + a + l , a+: 

^ a + 2 , a+l ~~ ̂ ^ n + a + 2 , a+. 

"i, a+l + "; '+l, a+l ~ X"n+i+l, a+ 

~~*:"/> a+l ~*~ **«+/', a+l "• ^n+i+l, a+. 

~ ~ ^ a + l , a+l "*" ^n+a+1, a+ 

~X"a+2, a+l + 2dn+a+2, a+l + ^n+a+3, a+l 

—Xa7 a + 1 + aw+/-s a + 1 + ^n+i+l, a + 

f o r l < / < a - l ; 
= A; 
= A; 
= 0 fora + 2<i<n; 
= 0 for 1 < / < a; 
= -xA; 
= 0; 
= 0 fora + 3</ '<^: 

2«+l 

(4.1.2) 
(4.1.3) 
(4.1.4) 
(4.1.5) 
(4.1.6) 
(4.1.7) 
(4.1.8) 
(4.1.9) 

(4.1.10) 

Since the second subscript is a + 1 in every case, there should be no confusion if we drop it; 
i.e., we will write dt for df a+l. To establish (4.1.2) note that, for 1 < / < a - 1 , we have 

dx +di+x-xdn+m = -2(x + 2)Ta_, + x(x + 2)Tn_a_2M +2-2(x + 2)Ta_i_1 
+ x(x + 2)T„_a_l+i + 2 + 2x2(x + 2)Ea_i_l -x\x + 2)E„_a_2+i -x2 

= -2(x + 2)(Ta_i + Ta_i_1-x2Ea_,_l) 
+ x(x + 2)(7/„_a_2+;. + Tn_a_w - x2E„_a_2+i) + 4 - x2 

= (x-2)(x + 2) + 4-x2 =0, by (3.2). 

For (4.1.3), we have 
da + 2da+1 - xdn+a+1 = -2{x + 2)7/0 + x(x + 2)Tn_2 + 2 + 2x(x + 2)E„_X + 2 

+ 2x2(x + 2)E_l - x3 (x + 2)E„_2 - x2 

= x(x + 2)(T„_2 + 2En_1-x2E„_2-l), by (3.0.10) and (3.0.13) 
= A, by (3.2), (3.0.5), and (3.0.3). 

For (4.1.4), note that 

da+2-xd„+a+2 = x(x + 2)(T„_l -2En_2) = A, by (3.0.10), (3.0.5), and (3.0.3). 

Both (4.1.5) and (4.1.6) are immediate from (3.0.5). 

For (4.1.7), we have 

-xda+1 +dn+a+l = -x2(x + 2)(En_1 -En_2) = -xA, by (3.0.3) and (3.0.10). 

For (4.1.8), 

-xda+2 + 2d„+a+2 + dn+a+3 = 2{x + 2){x2En_2 - Tn_x - Tn_2 +1) = 0, by (3.2). 

For (4.1.9), we have, for a + 3 < i < n, that 

-xdt +dn+i +dn+M = 2(x + 2)(x2E„. -T -T 
^n+a+l-i xn+a—i 

) 
+ x(x + 2XTM+T1_a_2-x2Ei_a_3) + 4-x2 

= 0, by (3.2). 

Finally, for (4.1.10), we have 

30 [FEB. 



FIBONACCI-TYPE SEQUENCES AND MINIMAL SOLUTIONS OF DISCRETE SILVERMAN GAMES 

2n+l a-\ n-2 

£«/, =-2(x + 2)£2;+x(x + 2) YJTi+2a + x{x + 2)E„_l+\ 
i-\ i=Q i=n-a-l 

n-2 n-2 

-2x(x + 2)Y,Ei+x1{x + 2)YJEi+nx~(x + 2)Tn_l+\ 

-2(x + 2)^? ; + x(x + 2) J j ; + 2 ( / i - a - l ) 
i=a 1=0 

= (x2 - 4 ) " f ?: + x(x2 -4 ) " f E,^x(x + 2)En_l -(x + 2)Tn_, +»(x + 2). 
i=0 7=0 

With the use of (3.8) and (3.9) we obtain, upon simplification, 
2w+l 
X 4 = (1 - Tn_x - Tn_2) + x(En_h- £„_2 - r„_,) + (x2 + 2x)E„_l. 
/=1 

Then, using (3.2), (3.0.5), and (3.0.3), we have 
2w+l 
£ j ; = -*2£„-2 -2x£„_2 + (x2 + 2x)£„_1 = (x2 +2x)(£„_1 -E„_2) = A, 
i=l 

and the proof is complete. 
The column D.n+a+2 is defined as follows: 

du n+a+2 = "2(x + 2)7_+/_2 + x(x + 2)Ta_t +2 for 1 < i < a; 
da+\, n+a+2 = ~(X + ^Wn-l + ^ 

4 , « + . + 2 = - 2 ^ + 2)£z_a_3+x2(x + 2)^ + a _ / +x fora + 2</<w + a + l; (4.1.11) 
dn+a+2, n+a+2 ~ X\X + ^)^n-\ + ^ 

4 , n+a+2 = "2(* + 2)7?_„_a_3 + x(x + 2)72lI+a+1_,. +2 for n + a + 3 < i < 2n +1. 

Theorem 4.2: With .4, .4*, and A as in Theorem 4.1, and -D.„+a+2 as defined in (4.1.11), we have 

AD„+a+2=AA:+a+2. (4.2.1) 

Proof: The column A*n+a+2 has -x in row a + 1, 1 in rows n + a + l,n + a + 2, and 2« + l, 
and 0 in each of the remaining rows. We need to show that the following equations are satisfied: 

dU n+a+2 + 4+1, «+«+2 " ^ + / + 1 , n+a+2 = ° for 1 < / < a - 1; (4.2.2) 

"a,«+a+2 + ^da+l, n+a+2 ~ xdn+a+\, n+a+2 = ^ (4.2.3) 

da+2,n+a+2 ~ xdn+a+2, n+a+2 ~ ~x&', (4.2.4) 

di, n+a+2+ 4 + l , n+a+2 ~ xdn+r+l, n+a+2 = ° for a + 2 < I </i; (4.2.5) 

- ^ / , W + a + 2 + dn+i,n+a+2 + dn+i+l,n+a+2 = ° for 1 < / < ^ (4.2.6) 

-X"a+l,«+tf+2 +dn+a+\,n+a+2 ~ &', \ 4 - ^ - ' / 

- X a a + 2 5 „ + a + 2 + ^n+a+2, n+a+2 + dn+a+3, n+a+2 ~ ^ (4.Z.5J 

-^,»+fl+2+^+/,«+a+2+^+/+i,w+fl+2 = ° fora + 3<7<w; (4.2.9) 
2w+l 

2X„+ a + 2=A. (4.2.10) 
/=1 
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Again we drop the second subscript, which is n + a + 2 in every instance. Thus, we write df for 
di,n+a+2- To show (4.2.2) we note that, for 1 < /' < a - 1 . 

dt + dM ~ Xdn+M •= - 2 ( * + 2)(Tn+i-a-2 + ^-M-a-1 ~ ^E„M_a_2 ) 

+ x(x + 2)(Ta_I+Ta_i_l-x2Ea_i_1) + 4-x2 

= 0, by (3.2). 
For (4.2.3), 

da + 2da+1 - xd„+a+1 = -2(x + 2)(T„_2 + r„_! - x2E„_2 ) + x(x + 2) + 4-x2 

= 0, by (3.2). 

For (4.2.4), da+2 -xd„+a+2 = -x2(x + 2)(En^ -E„_2) = -xA, by (3.0.3). 

For (4.2.5), note that, for a + 2 < i < n, 

d, +di+l-xd„+i+1 = -2x(x + 2)(Ei_a_z+Ei_a_2 -Ti_a_2) + x2(x + 2)(E„+a_i+En+a_i_1-T„+a_i) 
= 0, by (3.0.5). 

For (4.2.6), we have, for 1 < /' < a, that 

-xd, +d„+i+dn+i+1=2x(x + 2)(T„+i_a_2 -En+i_a_3-E„+i_a_2) + x2(x + 2)(Ea_i + Ea_i_1-Ta_i) 
= 0, by (3.0.5). 

For (4.2.7), -xda+1 +d„+a+l = x(x + 2)(Tn_1~2E„_2) = A, by (3.0.5) and (3.0.3). 

For (4.2.8) we have, using (3.0.10) and (3.0.13), 

-xda+2 + 2dn+a+2 + dn+a+3 = -x3 (x + 2)E„_2 + 2x(x + 2)En_1 + x(x + 2)Tn_2 +A-x2-2(x + 2) 
= x(x + 2)(-x2En_2 + 2En_x + T„_2 -1) 
= A, by; (3.2), (3.0.5), and (3.0.3). 

For (4.2.9), note that, for a + 3 < /' < n, 

-xd, + d„H + dn+i+l = 2(x + 2)(x2Ei_a_i - %_a_3 - %_a_2) 
+ x(x + 2)(-x2E„+a_i + r„+fl+1_7. + Tn+a_t ) + 4-x2 

= 0, by (3.2). 

Finally, (4.2.10) follows from (4.1.10) since the elements of D.n+a+2 are precisely those of 
D.a+1 but reordered. This completes the proof. 

We turn now to the solution of (2.4). Let Ube the column with components 
ui = GdKa+i-i forl<i<a; 

ut = xGaGi-a-2 for a + 2 < i < n +1; (4 2 11) 
u,, = xGn+aJrX_iGd for« + l<7<n + a + l; \ • • ) 

"n+a+2 ~~ ̂ a > 

Uj = Kj_„_a_2Ga for n + a + 3 < / < 2« +1. 

(Note that w„+1 occurs twice but that the two expressions agree.) 
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Theorem 4J: With U as defined by (4.2.11), the column Pf = U/(x + 2)Rn_l satisfies (2.4), 
namely APf = (0, 0,..., 0, l)f, for the matrix A of type (i), and has all components positive for 
x > 2. The vector P is thus the unique optimal strategy for the row player in the reduced game of 
type (i). 

Proof: That all components are positive for x > 2 is clear from Theorem 3.1. To prove that 
(2.4) is satisfied, we show that A U = (0,0,..., 0, A)f, where A = (x + 2 ) ^ . 

For 1 < i < a -1, we have 

AiJJ = ut +ui+1-xun+i+l = Gd(Ka+l_f +Ka_t -x2Ga_i) = 0, by (3.3). 

Also, 

AaU = ua+2ua+l--xuri+a+l = Gd(K1+2-x2) = 0, by (3.0.15), 

and 
A+hU = Ua+2 ~ XUn+a+2 = xG

aG0 ~ xGa = 0, 

since G0 = 1. 

For a + 2 < i < n9 

A1.U = ut +ui+1-xun+i+l = xGa{Gt_a_2 + G/_a_1 - iw- i )> 

and, for n +1 < i < n + a9 

Af.U = -xUi_n + ut + uM = xGd (-Kn+a+1_f + Gn+a+l_t + Gn+a_t), 

and both of these are 0 by (3.0.7). 

Next, 
A„+a+l.U = -xua+l +un+a+l = -xGd +xGd = 0, 

and 

An+a+2.U = -xua+2 +2un+a+2 +un+a+3 = Ga(-x2 + 2 + 1^) = 0, by (3.0.15). 

For n + a + 2<i< In, we have, by (3.3), 

AiJJ = -xut_n +ut +ui+l = Ga(-x2G;_„_a_2 + Kt_n_a_2 +Ki_n_a_l) = 0. 

Finally, using (3.0.7), (3.0.4), (3.0.14), and (3.0.12), we have 
2«+l ( a \ d a-\ ( d \ 

i=l V /=1 / /'=0 /=0 V /"=1 / 

= ( G A +GaHd) + x(GaRd +GA-i) 

(recall that rf = « - a - l ) , and in view of (3.10.1) and (3.11.1) this is equal to (x + 2)i?„_1? as 
claimed. This completes the proof. 

For the column player's optimal strategy, we use the vector W = (wlt w2,..., ^2n+\) defined by 
(4.3.1) below: 
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wi = x(x2 - 4)Ra_fHd for 1 < j < a; 
Wa+l=2Ha+xHd; 

w. =(x2-4)HaHi_a_2 fora + 2<i<n + a + i 
wt = (x2 - A)Hn+a^_tHd for n +1 < i < n + a +1; 2 ,,„ „ , . . . . . . . . ( 4 3 1 ) 

w, = x(x2 - 4)/7fl^._IM_3 for ̂  + a + 3 < i < In +1. 

Theorem 4.4: For x > 2, the vector Q = WIx{x + 2)Rn_l, where fFis defined by (4.3.1), has all 
components positive and satisfies (2.16) for the batrix B of type (i). This is therefore the unique 
optimal strategy for the column player. 

Proof: The proof is very similar to that of the preceding theorem, and we omit the details. 
The game value, V^, for the reduced game of type (i) is now easily computed as well. It is 

given by the product PB.j for any column J5 • of the payoff matrix. Using the middle column, we 
have 

( n 2n+l 

V® = PB.n+1 = 
n 2n+l \ / 

"2> + I > /(* + 2)^-1' 
V i = l 

and with the use of (3.0.7), (3.0.4), (3.17), and (3.18), we obtain (4.5.1) below. 

Theorem 4.5: For x > 2, the game value V^ for the reduced game of type (i) is given by 
(x-2)Ra_d_l 

(° (* + 2)JU 
Moreover, 

?(i)>0, (̂i) = 0, orF( i )<0 according as a> d, a = d9 or a <d. (4.5.2) 

Proof: The assertion (4.5.2) follows from Theorem 3.1 and (3.0.11). 

5. GAMES OF TYPE (ii) 

In a matrix A of type (ii), only columns c + 2,n + c + 2, and/? + c + 3 differ from the corre-
sponding columns of A*, so to show nonsingularity of A it would suffice to show that these three 
columns of A* lie in the column space of A. However, we can simplify the problem further by the 
observation that the type (ii) matrix A with parameters c, d differs from the type (i) matrix A' 
with parameters a' = c + l,d' = d only in column n + c + 2 = n + af + 1, and in this column, Af 

agrees with A*. Thus, it suffices to show that A*n+c+2 lies in the column space of the type (ii) 
matrix A. To that end, we use the column D defined by (5.0.1) below, and show that AD = 
xGn-\£n+c+2> wWch suffices in view of Theorem 3.1. 

for 1 < / < C + 1; 

forc + 3 < / < » + c + l; ( J Q J } 

forw + c + 4</<2w + l. 

dt 
dc+2 

dt 

®n+c+2 

^n+c+3 

d, 

- ^n+i-c-2 

= # / ! - i ; 
- -xGf_c_3 
= xRn_l; 
= - i ; 
= ~-^i-n-c-3 
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Theorem 5.1: Let A be a matrix of type (ii) with parameters c and d, and let A* be the associated 
matrix of the same dimensions as A as described in Section 2. With D as defined in (5.0.1), we 
have 

AD = XG„_XA:+C+2. (5.1.1) 

Proof: The column A*n+a+2 has -x in row c +1, 1 in rows n + c +1, w + c + 2, and 2/? +1, and 
0 in each of the remaining rows. We need only show, therefore, that the following conditions are 
fulfilled: 

dt + di+l-xdn+i+l =0 for 1 <i < c; (5.1.2) 
dc+l + 2dc+2 -xdn+c+2 = -x2Gn_x; (5.1.3) 

dc+3-xdn+c+3=0; (5.1.4) 
di+di+l-xdn+j+l=0 for c + 3<i<n; (5.1.5) 
-xdi_n+di+dM =0 forn + l<i<n + c; (5.1.6) 

-xdc+l +dn+c+l = xGn_x\ (5.1.7) 
-xdc+2 +2dn+c+2 = xGw_i; (5.1.8) 

-x< + 3 +2rfw+c+3 +d„+c+4 = 0; (5.1.9) 
-xdi_n+di +di+l =0 forn + c + 4<i<2n; (5.1.10) 

2«+l 

Y,di=xGn_l. (5.1.11) 

For (5.1.2) we have, for 1 < i < c, 

4 + dM ~ Xdn+i+l = -Kn+i-c-2 ~ Kn+i-c-l + ^ ^ - ^ 2 = °> by (3.3). 

For (5.1.3), 

= x2G„_1, by (3.3), (3.4), and (3.0.7). 

For (5.1.4), dc+z - xdn+c+3 = -xG0 + x = 0, by (3.0.12). 

For (5.1.5), note that, for c + 3 < i < n, 
d, +di+l-xd„+M = -x(G,_c_3 + G,_C_2 -^_ c _ 2 ) = 0, by (3.0.7). 

For (5.1.6), we have, for n + l<i <n + c, 
-xdt_„ + d, +di+1 = x(Ki_c_2 - G,_c_3 - G,_c_2) = 0, by (3.0.7). 

For (5.1.7), -xdc+l +d„+c+l = xiK^ -G„_2) = xG„_u by (3.0.7). 

For (5.1.8), observe that 
-xdc+2 +2d„+c+2 = *(-#„_, + 2 ^ ) = xGn_u by (3.0.6) and (3.0.4). 

For (5.1.9), we have 

- x ^ + 3 + 2 ^ + c + 3 + < + c + 4 = x 2 G 0 - 2 - ^ =0, by (3.0.12) and (3.0.15). 

rfc+l - 2dc+2 ~ xdn+c+2 = ~ ^ - l + 2 ^ 2 - l ~ X Ki-l 
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For (5.1.10), we note that, for « + c + 4 < i < 2w, 

-xdt_n +dt + di+1 = x2Gt_n_c_3 -Kt_n_c_3 - JT,_W_C_2 = 0, by (3.3). 

Finally, for (5.1.11), we have 
2«+l n-l n-2 

7 = 1 7 = 1 7 = 0 

From (3.0.7) and (3.0.15), we obtain 
n-l 

7 = 1 

and from (3.0.4) and (3.0.11), 
n-2 

^Gi=Rn_2, 
7=0 

so that 
2«+l 

Y.di = X(Rn-l -Rn-l) = XGn-n 
7 = 1 

and the proof is complete. 
We turn now to the solution of (2.4) for matrices A of type (ii). Let D be the column with 

components as given in (5.1.12) below. 

dt = (x2 - 4)GdHcU_t for 1 < i < c +1; 
dc+2=2Gd; 

di = x(x2 - 4)RcGf_c_3 for c + 3 < i < n +1; 
dt =x(x2-4)Rn+1+c_jGd forn + l<i<n + c + l; (5.1.12) 

®n+c+2 = %Gd > 

dn+c+3 = (x2-4)Rc; 
di = (x2 - 4)RcKi_n_c_3 for n + c + 4 < i < In +1. 

Note again that the two expressions for dn+l agree. 

Theorem 5.2: Let A be the matrix of type (ii) with parameters c and d. Let Pt - DI {x + 2)Gn_1, 
whereD is as defined by (5.1.12). ThenP satisfies (2.4), namely APf = (0, 0,..., 0, l)r, and has all 
components positive for x > 2. 

Proof: That all components are positive for x > 2 is clear from Theorem 3.1. To prove that 
(2.4) is satisfied, we show that AD = (0,0,..., 0, A), where A = (JC + 2)G„_1. Let Ai. denote the 
Ith row of A. 

For 1 < i < c, 

AiD = dj +di+l-xdn+i+l = (x2-4)Gd(Hc+l_i +Hc_j-x2Rc_i) = 0, by (3.4). 

Also, 
Ac+lD = dc+l + 2dc+2 -xdn+c+2 = (x2 -4)Gd -x2Gd= 0. 
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Next, 
AC+2D = dc+3 - xdn+c+3 = x(x2 - 4)RCGQ - x(x2 - 4)RC = 0. 

For c + 3 < i < n9 

A,.D = dt +di+l-xdn+i+l = x(x2 -4)Rc{Gl_c_3 + Gt_c_2 -KM) = 0, by (3.0.7). 

For » + 1 < / < H + C, 

4JD = -xdt_n +di +di+1 = x(x2 -4){-Hn+c+l_i +Rn+c+l_i +i^+c_/) = 0, by (3.0.6). 

We have 
An+c+lD = -xdc+l +d„+c+l = x(x2-4)Gd(-H0+Ro) = 0, 
An+c+2-D - ~xc*c+2 + 2dn+c+2 = 0, 

and 
An+C+3D = -xdc+3 + 2d„+c+3 +dn+c+4 = (x2 -4)Rc(-x2G0 + 2 + ^ ) 

= 0, by (3.0.12) and (3.0.15). 

For n + c + 4<i<2n, 

A,D = -xdt_n +dt +dM = (x2 -4)Rc{~x2Gi_n_c_3 + X 7 „ 3 + Ki_n__c_2) = 0, by (3.3). 

Finally, 
2w+l 

7 = 1 

= (*2 - 4 ) G , X ^ +2G, + x(x2 -A)RcfjGi+x(x2 -4)Gd^R, 
/=0 i'=0 7=0 

f d ^ 
v /=i y 

= (x2 - 4)Gdrc + (x + 2)G„ + x(x2 - 4)RcRd + x(x2 - A)GdEc_x + (x2 - A)RcHd, 

using, in turn, (3.0.6), (3.0.13), (3.0.11), (3.0.3), (3.0.10), (3.0.7), and (3.0.14). Upon factoring 
out (x + 2) and separating into even and odd parts, we obtain 

i 2n+l 
— 2 > , = (-2(GdTc +HdRc) + Gd +x2{RcRd + Ec_fid)) 

+ x((GdTc + HdRc)-2(RcRd+Ec_1Gd)). 

The odd part is 0, since Gd(Tc-2Ec_l) + Rc(Hd-2Rd) = GdRc-RcGd, by (3.0.5), (3.0.3), 
(3.0.6), and (3.0.4). Thus, we have 

i 2n+l 

^ 1 4 - (*2 ~ 4 X « +Ec_lGd) + Gd 

= (Gc+l-Gc)Rd + GcGd, by (3.5) and (3.6), 
= Gc+iRd-GcRd_l 
= Gc+d+l = Gn_u by (3.12). 

This completes the proof. 
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For the optimal strategy for the column player, we use the vector W with components as 
given in (5.2.1) below. 

w, = x(x2 - A)Gc+l_iHd for 1 < i < c'+1; 

(5.2.1) 

Wc+2 

W, 

w, 
W„+c+2 
W » + C + 3 

- 2Kc+l; 
= (x2-4)Kc+1Hi_c_3 

= (x -4)K„+c+2_iHd 

= (x2-4)Hd; 
= xKc+l; 

for c + 3 < / < n +1; 
for n +1 < i < n + c +1 

w,. = x{xz - 4)^c+1i^_w_c_4 for w + c + 4 < / < 2w +1. 

Theorem 5.3: For x > 2, the vector Q = WI x{x-¥l)Gn_l, where JF is the vector defined by 
(5.2.1), has all components positive, and satisfies (2.1b) for the matrix B of type (ii). Therefore, 
this is the unique optimal strategy for the column player in the game with payoff matrix B. 

The proof is similar to the proof of the preceding theorem, and we omit the details. 
The middle column, B.n+l is the same for all four types of reduced matrix, and we use it again 

to compute the game value, V^. With D as given by (5.1.12), we have 

v<® = 

f n 2n+l \ I 

- I 4 + E 4 /(* + 2)GU 

and with the use of (3.0.6), (3.0.4), (3.0.3), (3.0.7), (3.5), (3.6), (3.7), (3.17), and (3.19), we 
obtain (5.4.1) below. 

v& = r;:™ , CAI) 

Theorem 5.4: For x > 2, the game value, F(ii), for the reduced game of type (ii) is given by 

(x~2)Gc_d 

(x + 2)Gc+d+l 

and 
Vm > 0 for all c and d. (5.4.2) 

Proof: The assertion (5.4.2) follows from (3.0.12) and Theorem 3,1. 

6. GAMES OF TYPE (iii) 

The payoff matrix for a game of type (iii) is sufficiently closely related to that for a game of 
type (ii) that we may use our results from Section 5 to obtain the corresponding theorems here. 
The key observation is the following. 

Remark 6.1: Let B be the payoff matrix for a game of type (iii) with parameters a and b, and let 
B' be the payoff matrix for a game of type (ii) with parameters cf = b and d' = a. If we change all 
signs in B, transpose about the main diagonal, and then transpose about the lower left to upper 
right diagonal, we obtain the matrix B'. 
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The matrix -B* obtained after the first two steps in Remark 6.1 is the payoff matrix of the 
game B with the roles of the players reversed. The third step obviously also preserves rank, so 
uniqueness of solutions P, Q, and Fto 

PB = (T,V,...,V) (6.1.1) 
and 

BQ* =(V,V,...,Vy (6.1.2) 

follow from uniqueness of solutions to 
P ' 5 ' = (F' ,F' , . . . ,F') (6.1.3) 

and 
B'Q'1 = {V\V\...Jf). (6.1.4) 

Moreover, the transposition of -Bf about its counterdiagonal sends row / of -B* to column 
In +1 - / of B', and column y of -Bf to row 2n + l-j ofBf. Thus we see that, if P\ Q', and V 
satisfy (6.1.3) and (6.1.4), and we define P to be the vector Q with the order of the elements 
reversed, Q to be Pf reversed, and V = -V, then P, Q, and V satisfy (6.1.1) and (6.1.2). We 
summarize this in the next theorem. 

Theorem 6.2: Let B be the payoff matrix of a game of type (iii), with x > 2 and Bf the associated 
payoff matrix of type (ii) as described above. Let P\ Q\ and V be, respectively, the optimal 
strategy for the row player, the optimal strategy for the column player, and the game value for B', 
and let P and Q be, respectively, Q reversed and P' reversed. Then P and Q are the optimal 
strategies for the row and column players, respectively, for the game B, and the game value, V^, 
is given by 

(x-2)Gb_a 

(x + 2)Gb+a+l 
Vm=-V' = - ; * ^ b - a . (6.2.1) 

The game value is negative for all values of b and a. 

7. GAMES OF TYPE (iv) 

The type (iv) matrix A, with parameters c and A, is a 2^ + 1x2^ + 1 matrix, where n = c + 
b + 2. In this matrix A, only column c + 1 differs from the corresponding column of A', where A' 
is the type (iii) matrix with parameters a' = c and b' -b. We shall establish nonsingularity of A by 
exhibiting a column D such that 

AD=A!c+iA, (7.0.1) 

where A'c+l is column c + 1 of A' and A = x(x + 2)Rn_l. The column D is defined by (7.0.2) 
below. 

dt = -x(x + 2)Hb+i for 1 < / < c; 
dc+l = x(x + 2)Gn_u 

dc+2 = 2x(x + 2)En_2 -x; 
di=-x2(x + 2)Ri_c_3 forc + 3 < / < ^ + c + l; (7.0.2) 

dt = -x(x + 2)Hi_rh_c^3 for w + c + 3 < i < In +1. 
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Theorem 7.1: Let A be a matrix of type (iv) with parameters c and Z>, and x > 2. Let A' be the 
matrix of type (iii) with parameters a' = c and b' - b. Then the column D defined by (7.0.2) satis-
fies (7.0.1) and thus A is nonsingular. 

Proof: The column A'c+l has a 2 in row c (if c > 0), -x in row n + c +1, 1 in the last row, 
and 0 in all other rows. 

For 1 < / < C , AiD = di+di+l-xd„+i+v If 7 < c, this is x{x + 2){-Hb+i-Hb+i+l+x2RbM\ 
which is 0 by (3.4). If i = c, we have AiD = x(x + 2)(-Hn_2 + Gn_x - x2R„_2 ) = 2x(x + 2)i^_x = 
2A, by (3.4), (3.0.4), and (3.0.6). 

For rows c + 1 and c + 2, we have 

4+i.£> = dc+i + 2 ^ + 2 " *^ + c + 2 = *(* + 2)(G„_1 + 4E„_2 - x2En_2 -1) = 0, by (3.6), 
and 

4+2 £ = ^ + 3 " <+c+3 =X2(X + 2 ) ( - ^ + flo) = 0. 

For c + 4 < i < n, 

Ai.D = di +dM-xdn+i+i = x\x + 2){-Ri_c^ -R,_c_2 +HM) = 0, by (3.0.6). 

For n +1 <"7 < n + c, 

4 . i ) = - ^ , _ „ + f l ' , . + ^ + 1 = x2(x + 2)(//,+ft_„-JR,_c_3-i?i_c_2) = 0, by(3.0.6), 

since 77 = & + c + 2. 

With 7 = 77 + c +1, we have 

An+c+lD = -xrfc+1 + </w+c+1 = - x 2 ( x + 2)(G„_1 +i?„_2) = -xA, by (3.0.4), 
and 

An+C+2D = -xdc+2 + 2dn+c+2 + < + c + 3 = x2 + 2x - x(x + 2)H0 = 0. 

For 77 + c + 3 < i < 277, 

4.Z) = -x4_„ + 4 + rf/+1 = x(x + 2 ) ( - x 2 i ^ _ c _ 3 +Hi_n_c_, +Hi_r^c_2) = 0, by (3.4). 

Finally, 
2«=1 f w-2 w-2 A 

^W> = E4=*(* + 2) -I#,+Gn_1+(x + 2)£;i_2-x;£^. 
/=! V /=0 /'=0 / 

By (3.0.3) and (3.0.10), Zf-0
2i^. =£„_2, and by (3.0.6) and (3.0.13), T^IQ Ht = Tn_2. Thus, 

2w+l 

5 > , = *(* + 2)(-rB_2 + G„_! + 2£„_2), 

and with the help of (3.0.5), (3.0.4), and (3.0.3), this is easily seen to be equal to A. This com-
pletes the proof. 
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We turn now to the solution of (2.4) for the matrix A of type (iv). Let D be the column with 
components as defined in (7.1.1) below. 

4 - ( x 2 - 4 ) i f c + 1 _ ^ f o r l < i < c + l; 
dc+2=xRc+2Rb; 

dt = x(x2 - 4)i?^_c_3 for c + 3 < i < n +1; 
di=x(x2-4)Rn+1+c_iRb forn + l<i<n + c + l; 

di = (x2 - 4) J^_w_c_3i?c for n + c + 3 < i < In +1. 

Theorem 7.2: Let >4 be the matrix of type (iv) with parameters c and b. Let P* =D/(x + 2)Rn_l, 
where D is defined by (7.1.1). Then P satisfies (2.4) and has all components positive for x > 2. 
Thus, P is the unique optimal strategy vector for the row player in the game of type (iv). 

Proof: That all components are positive is clear from Theorem 3.1. To prove that (2.4) is 
satisfied, we show that AD = (0, 0,..., 0, A), where A = (x + 2)Rn_v 

For 1 < / < c, 

A,.D = dt +di+l-xdn+M = (x2-4)Rb(Hc+1_i +Hc_i -x2Rc_t) = 0, by (3.4). 

For rows c + 1 and c + 2, we have 

Ac+lD = dc+l + 2dc+2 - xdn+c+2 = (x2 - 4)H0Rb + 2xRc + 4Rb - 2xRc - x2Rb = 0, 
and 

AC+2D = dc+3 - xdn+c+3 = x(x2 -4)RC(R0 - H0) = 0, 

since H0 = R0 = lby; (3.0.11.) and (3.0.14). 

For c + 3<i <n, 

A,D = d, +dM - xd„+i+i = x(x2 - 4)Rc(Ri-c-3 +Ri-c-2 - Hf-c-2 = °> by (3 0-6)-

For n + \<i <n + c, 

AtJD = -xdt_n +dt +di+l = x(x2 -4)Rb(-H„+c+l_i +R„+c+l_l +R„+C_i) = 0, by (3.0.6). 

For the next two rows, we have 

A„+c+hD = xdc+l +dn+c+l = x(x2 -4)Rb(H0-R0) = 0, 
and 

An+C+2.D = -xdc+2 +2d„+c+2 +d„+c+3 = (-x2 + 4)Rc+(-2x + 2x)Rb +(x2 -4)H0RC = 0. 

For n + c + 3<i <2n, 

AiD = -xd,_„ +dt +dM = (x2 -4)Rc(-x2Ri_„_c_3+Hi_„_c_3+Hi_„_c_2) = 0, by (3.4). 

Finally, using (3.0.6), (3.0.13), (3.0.3), and (3.0.10), we have 
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2n+l 
2 A2„+i-D= 1 4 = (x2 - 4 ) ^ £ # ; +(x + 2)(Rc + Rb) 

/=1 i=0 

+ x(x2 -4)RXRi+x(x2 - 4 ) ^ § ^ + (x2 - 4 ) ^ £ # , 
1=0 /=0 i=0 

= (x2 -4)(i?,7; + i ^ ) + (x + 2)(i?c +i^) + x(x2 -4)(i?c£, +i?^c„1). 

Upon factoring out (x + 2) and separating into even and odd parts, we obtain 
| 2«+l 

r 5 > , = (R„(x2Ec-i ~2TC +1) + ̂ ( x 2 £ 6 -2Tb +1)) + x(Rb(Te -2Ec_y) + Rc(Tb -2Eb)). 
x + 2 ,., 

The odd part is easily seen to be 0 using (3.0.5) and (3.0.3), and with the help of (3.2), (3.0.6), 
and (3.13), we see that the even part is Rb+C+1. Since n = b+c + 2, we have 

A2n+lD = (x + 2)R„_1, 

and the proof is complete. 

To describe the optimal strategy for the column player, we use the vector W defined in 
(7.2.1) below. 

wi = ^c+i-i^+i for 1 < i < c +1; 
Wc+2 =Kc+U 

Wt = Kc+iKi-c-2 for c + 3 < / < rc +1; 
wt = Kn+c+2-iKb+i forw + l < / < / i + c + l; 

Wn+c+2 =Kb+l> 
wf = xZc+1Gz_„_c_3 for n + c + 3 < / < In +1. 

Theorem 7.3: The vector Q = W/x(x + 2)Rn_l, where J^is defined by (7.2.1), has all compo-
nents positive for x > 2, and satisfies (2.1Z>) for the matrix B of type (iv). Therefore, this is the 
unique optimal strategy for the column player in the game with payoff matrix B. 

The proof is straightforward and is left to the reader. 

With D as given by (7.1.1), we again express the game value F(iv) in the form 

V -
2«+l \ 

V /=! i=n+2 J 
l(x + 2)Rn_l, 

and using (3.0.6), (3.0.3), (3.7), (3.6), (3.21), and (3.20), we obtain (7.4.1) below. 

Theorem 7.4: The game value F(iv) for the reduced game of type (iv) with x > 2 is given by 

( x - 2 ) * ^ 
(,v) (x + 2)Rb+c+l 

Moreover, 

F(iv) > 0, F(iv) = 0, or F(iv) < 0 according as b > c, b - c, or b < c. (7.4.2) 
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With the theorems of Sections 4-7 we have now established the irreducibility of the 
Silverman games in the four classes of odd order games which arise in Chapter 8 of [7], and have 
given game values and optimal strategies explicitly in terms of the various parameters involved. 
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