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1. INTRODUCTION 

A remarkable theorem of Lucas ([8], pp. 229-30) states that the value of the binomial 
coefficient (£) is congruent, modulo a prime /?, to the product of the binomial coefficients of the 
respective base-/? digits of n and k. In other words, if 

n - E rijpJ, where 0 < «;. < p for each/ 
and 

k - S kjpJ, where 0<kj<p for each/', 
then 

f 

>n £> | (mod/?). (1) 

For example, since 2280 = (643 5)7 and 1823 = (5213)7, we have 

Formula (1) is equivalent to Lucas's earlier generalization of an 1869 result of H. Anton ([1], pp. 
303-06; [7], p. 52; [2], p. 271): 

?M«!vv£)te) <™ .̂ <2) 
where n div/? denotes the integer quotient of n by/?, and n mod/? its remainder. For short proofs, 
see [3] and [9]. For our purposes, it is better to reformulate this theorem in terms of 

B{m,ri) = B(m div/?, ndivp) B(m mod p, nmodp) (mod/?). (3) 

[If (m + ri) divp-m divp + n div/? and (m + n) modp = mmodp + nmodp, then this just re-
expresses (2); if not, then, again by (2), both sides may be shown to be congruent to 0.] Repeated 
application of (3) yields the following counterpart of (1): 

B(m,n) = nB(mj9nj) (mod/?), (4) 

where ntj and nj are the base-/? digits of m and n, respectively. Our goal is to obtain formulas 
corresponding to (3) and (4) for Fibonomial coefficients. 

In analogy with the usual definition of binomial coefficients 
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j=0 

we define the FIbonomia! coefficients by 

C(m, n) = m + n 
m 

m-l J7 

-U-^- fa"*0)' (5) 

where Fk denotes the kth Fibonacci number, and an empty product is taken to be 1 (see [8], §9; 
also [4] and [5]). Some values of C(m,ri) are tabulated in Table 1; there C(0, 0) appears at the 
upper left corner. We note that, for m, n > 0, 

C(7w,0) = l, C(0,w) = l, and C(m,ri) = C(n,m). 

TABLE 1: Fibonomial Coefficients 

1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
3 
5 
8 
13 

1 
2 
6 
15 
40 
104 
273 

1 
3 
15 
60 
260 
1092 
4641 

1 
5 
40 
260 
1820 
12376 
85085 

1 
8 

104 
1092 
12376 
136136 
1514513 

1 
13 
273 
4641 
85085 

1514513 
27261234 

1 
21 
714 

19635 
582505 

16776144 
488605194 

1 21 714 19635 582505 16776144 488605194 14169550626 

Using the identity 
F

m+n=Fm+lFn+FmFn-l 0" , W £ 0) ( 6 ) 

and the definition, (5), one may deduce (see [4]) the key recurrence formula for m,n>\: 

C(m, n) = Fm+lC(mv n -1) + F^C{m -1, n\ (7) 

This is the Fibonomial counterpart of the Pascal triangle recurrence, 

B(m, n) = B(m, n -1) + B(m -1, n). 

[Alternatively, by symmetry, we also have 

C(m, n) = i ^ C O , n -1) + Fn+lC(m -1, w). 

Then, in terms of the Lucas numbers Lk = Fk_l +Fk+l, we have, by addition, the symmetric recur-
rence formula 

2C(m, n) = LmC(m, n-l) + LnC(m - 1 , /i). ] 

From (7) it follows that the Fibonomial coefficients must be integers ([8], p. 203). 
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2. COMPUTING FIBONOMIAL COEFFICIENTS MODULO A PRIME 

To state our theorem, we need to introduce 
r = r(p):=tmn{k>0:p\Fk}, 

the rank of apparition ofp in the Fibonacci sequence, and 

t = t{p): = the period of (Fk mod p). 

It is known [10] that, for any prime/?, t/r = 1,2, or 4. 

Theorem: Assume p is a prime number ^ 5. Let m' = m div r, m" = (mmod t) div r, m* =m 
mod t, and similarly for n. Then 

C(m, n) = £(»!', n'){B(rn", n")'1 mod/?}C(wf*, /?*) (modp), 

where the term in braces is the modulo-p multiplicative inverse of B(m", n"). 
Notice that the first factor here is a binomial coefficient and is the same as the first factor in 

(3) except that r replaces p. The last factor is a Fibonomial coefficient from the initial t x t 
(instead of p x p) block of Fibonomial coefficients. We observe that the peculiar middle factor 
can only be: 1 if 11 r = 1; 1 or 2_1 mod p, if 11r = 2; and the mod-p inverse of 1, 2, 3, 4, 6, 10, or 
20, if tlr = 4. The omitted prime, p = 5, can be handled by the proposition we shall give later, 
from which we shall derive Theorem 1. 

By repeated application of Lucas's theorem, we get our counterpart of formula (4). It is not 
so tidy as the binomial case, depending as it does on the use of two mixed-radix representations: 

m = mkpk~lr + m^^^r -\— + m1/?°r + m0, 

where 0 < m0 < r and 0 < mj <p for j > 1, 

and m = m"'t+m"r+rnQ, 

where 0<m" <t Ir, 0<m'"<oo? and m* =m,,r+mQ, 

and similarly for n. Then, for a prime p * 5, we have our main formula: 

C(m,n)HE Y[B(jnj9nj){B(m"9n"yl modp}C(m*,n*) (mod/?). (8) 

As an example, let us compute C(23, 12) mod 3. Here p = 3, r = 4, t = 8, 

m=1.31-4 + 2-3°-4 + 3 
= 2-8 + 1-4 + 3 

and « = l-31-4 + 0.3°.4 + 0 
= 1-8 + 1-4 + 0 

So C(23,12) = B(l, 1)5(2,0){B(l, l)"1 mod 3}C(7,4) (mod 3) 
^2.1-{2-1mod3}-l (mod3) 
s 2 - l - 2 - l s l (mod 3). 
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The value for C(7, 4) mod 3 was obtained from Table 2, which was generated by means of the 
basic recurrence formula. It also includes enough additional values to corroborate our answer for 
C(23, 12). 

TABLE 2« Fibonoraials mod 3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 
i : 
2 ] 
3 ] 
4 ] 
5 ] 
6 ] 
7 ] 
8 1 
9 ] 
10 ] 
11 ] 
12 ] 
13 ] 
14 ] 
15 ] 
16 1 
17 1 
18 ] 
19 ] 
20 ] 
21 1 
22 1 
23 ] 

I 1 
I 1 
L 2 
I 0 
I 2 
I 2 
I 1 
I 0 
[ 1 
1 1 
I 2 
[ 0 
[ 2 
1 2 
I 1 
1 0 
[ 1 
I 1 
[ 2 
L 0 
1 2 
1 2 
I 1 
I 0 

1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 
1 
2 
0 
0 

1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 

1 
2 
1 
2 
2 
1 
2 
1 
0 
0 
0 
0 
1 
2 
1 
2 
2 
1 
2 
1 
0 
0 
0 
0 

1 
2 
2 
0 
1 
2 
2 
0 
0 
0 
0 
0 
2 
1 
1 
0 
2 
1 
1 
0 
0 
0 
0 
0 

1 
1 
0 
0 
2 
2 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
2 
2 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 

1 
2 
2 
0 
2 
1 
1 
0 
1 
2 
2 
0 
1 
2 
2 
0 
2 
1 
1 
0 
1 
2 
2 
0 

1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
2 
2 
0 
0 
2 
2 
0 
0 
2 
2 
0 
0 

1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
2 
0 
0 
0 
1 
0 
0 
0 

Exercises for the Reader: (a) Find C(7, 4) mod2; (b) find C0759, 984) mod 7. 

[Answers: (a) 5(1, 0)5(0,1){5(0,0)"1 mod2}C(l, 1) = 1 (mod 2); cf. C(7, 4)=582505 from 
Table 1; (b) 5 (4 ,2)5(3 , 3)5(2,4){5(1,1)"1 mod 7}C(15, 8) = 1 (mod 7); using Table 3 below.] 

3. DEDUCING THE RESIDUES OF THE FIBONOMIALS MOD/? 

Let p be a fixed prime. Let r, t, m', n\ m", n", m*, and n* be as in the Theorem. Also, let 
m0 = m mod r and n0=n mod r. 

We shall deduce the residues of C(m, n) mod p in the following steps: 

Step 1: Show C(m, n) = 0 (mod p) for (m9 n) in the (r -1) x (r -1) triangles where m0+n0> r. 

Step 2: Calculate C{mfr,rir) mod/? (/**',«'= 0,1,2,...). 

Step 3: Determine the remaining values mod/? from the basic recurrence relation (7). 
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TABLE 3. Fibonomials mod 7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 

1 
1 
i 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

1 
1 
2 
3 
5 
1 
6 
0 
6 
6 
5 
4 
2 
6 
1 
0 

2 

1 
2 
6 
1 
5 
6 
0 
0 
1 
2 
6 
1 
5 
6 
0 
0 

3 

1 
3 
1 
4 
1 
0 
0 
0 
6 
4 
6 
3 
6 
0 
0 
0 

4 

1 
5 
5 
1 
0 
0 
0 
0 
1 
5 
5 
1 
0 
0 
0 
0 

5 

1 
1 
6 
0 
0 
0 
0 
0 
6 
6 
1 
0 
0 
0 
0 
0 

6 

1 
6 
0 
0 
0 
0 
0 
0 
1 
6 
0 
0 
0 
0 
0 
0 

7 

1 
0 
0 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 

8 

1 
6 
1 
6 
1 
6 
1 
6 
2 
5 
2 
5 
2 
5 
2 
5 

9 

1 
6 
2 
4 
5 
6 
6 
0 
5 
2 
3 
6 
4 
2 
2 
0 

10 

1 
5 
6 
6 
5 
1 
0 
0 
2 
3 
5 
5 
3 
2 
0 
0 

11 

1 
4 
1 
3 
1 
0 
0 
0 
5 
6 
5 
1 
5 
0 
0 
0 

12 

1 
2 
5 
6 
0 
0 
0 
0 
2 
4 
3 
5 
0 
0 
0 
0 

13 

1 
6 
6 
0 
0 
0 
0 
0 
5 
2 
2 
0 
0 
0 
0 
0 

14 

1 
1 
0 
0 
0 
0 
0 
0 
2 
2 
0 
0 
0 
0 
.0 
0 

15 

1 
0 
0 
0 
0 

"o 
0 
0 
5 
0 
0 
0 
0 
0 
0 
0 

To get started, we note that, for binomial coefficients, we have B(m, n) = 0 (mod/?) if m mod 
p + n mod p>p. Similarly, forFibonomial coefficients, we have 

Lemma 1: C(rn, ri) = 0 (mod p) if m0+n0> r. 

Proof #1: It follows from Knuth & Wilfs extension of Kummer's theorem to Fibonomial 
coefficients ([6], Theorem 2) that p\C(m,n) if and only if there is at least one carry across or to 
the left of the radix point when m/r and n/r are added in base/?. 

If m mod r + n mod r>r, then there will be a carry across the radix point. D 

Proof #2: This time we appeal to another theorem of Lucas ([8], p. 206): 
gcd(Fm,Fn) = Fgcd(mny 

It follows from this theorem that all the Fibonacci numbers divisible by any prime power ps have 
indices of the form kr(ps), where r{ps) is the rank of apparition of ps. Now consider C(m,n) = 
C{m'r + mQ,nfr +n0): 

m'r+mQ-l 

C(7W, ft) — J[ ^-T(m'+n'y+mQ+nQ-j I ^m'r+mQ-j • 
7=0 

Our hypothesis is that mQ+n0>r. Therefore, F{m,+n,+l)r is a numerator factor, and so the factors 
that are divisible hyp are the m' + l numerator factors 

F T? 7? 
r(m'+n'+l)r ? r(m'+n')r ? • • • ? r(n'+l)r 

and the w! denominator factors 
F F J? 
rm'r ? r{m'-X)r > • • • > rr • 
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Furthermore, by the consequence of Lucas's theorem noted above, every factor F s in the 
denominator is matched by such a factor in the numerator, without using the extra numerator 
factor Fim,+„.+l)r. So p\C(jn9n). D 

In preparation for the next step, we note the following formula: 

Fkr+X^Fkr-V^Ftl (™>d/>) (**<>). (9) 

Since F^. = 0 (mod p), the first congruence is clear. The second then follows by applying iden-
tity (6) with n = r and m = r -1,2r -1 , . . . , (k - \)r -1. 

Lemma 2: C(m'r, n'r) = B(m', n')F™i"' (mod p). 

Proof: To simplify the notation, let us suppress the primes on m and n during this proof. If 
m - 0 or n = 0, then 

C(mr, nr) = 1 and B(m, n)F™ = l - i £ , = 1. 

Now assume m > 1 and n > 1. Applying the basic Fibonomial recurrence (7) and Lemma 1 
repeatedly, we get 

C(mr, (n - l)r +1) = Fmr+1C(mr, (n - l)r) + F(„_1)rC(mr - 1 , (n - l)r +1) 
s F

mr+iC(mr, (n - l)r) (mod p); 

C(mr, (7i - l)r + 2) = F^CQnr, (n - \)r +1)+JF(„_1)r+1C(/«r - 1 , (» - l)r + 2) 
sFMrflC(i«r,(/i-l)i- + l) (mod/7) 
s Fmr+iC(mr, (n - l)r) (mod />); 

C(/wr, (» - l)r + r -1) = Fmr+lC(mr, {n-\)r+r-2) + F{„_l)r+r_2C(mr -l,(n-l)r + r-1) 
sFmr+iC(mr,(n-\)r+r-2) (modp) 
= Fmr+lFm7ZlC(mr> (" ~ 1>") ( m o d P) 

7r-\ = F£1C(mr,(n-l)r) (modp). 

C((m-\)r + r-\,nr) = F^\C((m-\)r,nr) (modp). 
Similarly, _ t 

Then 
C(mr, nr) = Fmr+1C(mr, nr-l) + Fnr_xC(mr - 1 , nr) 

- F ^ d m r , ( n - m + F^Cdm-iy,nr) (modp). 

By(9), Fr
mr^Fr

mr_x=F™x (modp) a n d F ^ s F ^ , (modp). So, for/w, n > 1, 

C(i«r, nr) = Fr
r^C(mr, (n - l)r) + Fr™ C((/» - \)r, nr) (mod p). (10) 

Let C'(m, n): = C(mr, nr). Then (10) becomes 

C'(m,n) = Fr
r^C'(m,n-\) + Fr

r^C'(m-\,n) (modp), (11) 

a recurrence formula that uniquely determines the values of C'(m, n) for m,n>\, given the boun-
dary conditions 
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C'(m90)- 1 and C'(0,n) = \ (m,n> 1). (12) 

Hence, to complete the proof, we need only verify that C"(m,ri): = B(m,ri)F™" mod/? satisfies 
(11) and (12). The boundary conditions (12) are readily verified. Modulo/? we have 

F^C'im, 7i -1 ) + F^C'Qn -1, n) = Fr™B(m, n - l)Fr
r^n~l) + Fr

r
n_xB(m -1, n)F^l)n 

= F™B(m, n -1) + F ^ O w - 1 , w) 

= F™fB(m, n) [by the Pascal triangle rule] 
sC"(w,w) , 

showing that (11) is satisfied. D 

We can refine Lemma 2 a little. By (9), 

F™;n'=F2 , , , (mod/?). 
r * r m'n'-l v ^ 7 

Here 

rm' = r(m div r)-m-m mod r = {m mod f -JW mod r) (mod7) = #i"r, 

where m" = (m mod 7) div r. Because t is the period of the Fibonacci sequence modulo/?, 
Frm>rn'-l=Frm"rn»-\ ( ^ o d / ? ) , 

and so Lemma 2 becomes 

C(»fV,nV) = 5 ( m ' , « ' ) ^ V v < - i (mod/;). (13) 

We shall complete our determination of the Fibonomial coefficient residues by applying the 
basic recurrence formula (7), C(m,ri) = Fm+lC(m,n-l) + Fn_lC(m-l,ri), to the determination of 
C{mfr +m0, n'r+n0) mod p from C(m'r, n'r). By Lemma 1 we have 

C(m'r + m 0 , f t ' r - l ) = 0 (mod/?) ( I < w 0 < r ) (14) 
and 

C(/w'r - l ,« ' r+w0)=s0 (mod/?) ( l < « 0 < r ) (15) 

and by Lemma 2 we know.C(/w'r,w'r) mod/?. We observe that application of the basic recur-
rence formula (7) with these boundary conditions will uniquely determine CQn'r +m0,n'r +n0) 
for 0 < m0, n0 <r, and that this solution matrix is proportional to the value C(mfr, n'r). Also, the 
solution matrix depends on the coefficients used, namely, Fm,r+l,...,Fm,r+r_l and F„v_1?..., 
Fn,r+r_2. Accordingly, we may make this 

Definition: Let A(m',n';m0,n0) be the solution C(m'r +rn0,n'r + n0) of the basic recurrence 
formula (7) satisfying the boundary conditions (14), (15), and (the possibly contrary-to-fact con-
dition) C(m'r,n'r) = 1. 

Since the coefficients Fk mod/? have period r, and since mrr + m0 =m"r+m0 and n'r + nQ = 
n"r+n0 (mod i) , we have A(m\ n'\ m0, n0) = A(m", ri'\ m0,nQ) (mod/?). Thus, we have proved 

Lemma 3: C(m, ri) = C(mrr, nrr)A(rn", n"\ m0, n0) (mod/?). 

By (13) and Lemma 3, we now have our general proposition. 
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Proposition: C(rn, n) = B(m\ n')Fr2 A(m", ri'\ mQ,n0) (modp). 

As an example, let us determine C(437, 151) mod 5. Here/? = 5, r = 5, and t = 20. 
m' = 437 div 5 = 87 = (322)5; w' = 151 div 5 = 30 = (110)5; 
#?0 =437 mod 5 = 2; «0 = 151 mod 5= 1; 
m" = 437 mod 20 div 5 = 17 div 5 = 3; n" = 151 mod 20 div 5 = 11 div 5 = 2. 

So C(437,151) ^ 5(3,1)5(2,1)5(2, 0)^2 3.2_^(3,2; 2,1) == 4 • 3 • 1 • 4 • 4 s 2 (mod 5). (We looked 
up the last factor in Table 4.) 

TABLE 4. A(m", n"; m0, %) forp = 5 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
2 
3 
0 

3 
3 
1 
4 
0 

4 
4 
3 
2 
0 

2 
2 
4 
1 
0 

1 
2 
1 
0 
0 

4 
3 
4 
0 
0 

1 
2 
1 
0 
0 

4 
3 
4 
0 
0 

1 
3 
0 
0 
0 

2 
1 
0 
0 
0 

4 
2 
0 
0 
0 

3 
4 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
4 
2 
1 

1 
3 
3 
1 
0 

3 
4 
4 
3 
0 

4 
2 
2 
4 
0 

2 
1 
1 
2 
0 

1 
1 
4 
0 
0 

4 
4 
1 
0 
0 

1 
1 
4 
0 
0 

4 
4 
1 
0 
0 

1 
4 
0 
0 
0 

2 
3 
0 
0 
0 

4 
1 
0 
0 
0 

3 
2 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
1 
4 
1 

1 
4 
2 
2 
0 

3 
2 
1 
1 
0 

4 
1 
3 
3 
0 

2 
3 
4 
4 
0 

1 
3 
1 
0 
0 

4 
2 
4 
0 
0 

1 
3 
1 
0 
0 

4 
2 
4 
0 
0 

1 
2 
0 
0 
0 

2 
4 
0 
0 
0 

4 
3 
0 
0 
0 

3 
1 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
4 
3 
1 

1 
2 
3 
4 
0 

3 
1 
4 
2 
0 

4 
3 
2 
1 
0 

2 
4 
1 
3 
0 

1 
4 
4 
0 
0 

4 
1 
1 
0 
0 

1 
4 
4 
0 
0 

4 
1 
1 
0 
0 

1 
1 
0 
0 
0 

2 
2 
0 
0 
0 

4 
4 
0 
0 
0 

3 
3 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

Finally, we get the formula stated in our Theorem by observing that in most cases we can find 
the r x rA-blocks hidden in the initial t x t C-block. In this block 

C(in"r + m0,ri"r + n0) = B(m\n^F^^Aim",«";m0,n0) (mod/?) 

and m' = m" and ri = n". So, if B(m", n") ± 0 (mod /?), then 

Fr*nfn--Am"> ""'> "*» ̂ ) s *0*"> O ^ C ^ ' V +/!%,/!'> +/%) (mod />). (16) 

Here 0<m",n" <tlr. Since t/r<4, the possible values of B(m",n") are 1, 2, 3, 4, 6, 10, and 
20. The only case where some value of B(m'\n") =0 (mod p) is /? = 5; then tlr = 4, and 
5(1,2) = 5(2,1) = 10 and 5(2,2) = 20 are not invertible mod 5. So, if p * 5, we may use (16) in 
the Proposition to determine the residue modulo/? of the Fibonomial coefficient C(/w, //) in terms 
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of the binomial coefficients B(m',n') and B(m",n") and the Fibonomial coefficient C(m"r + 
mQ,n"r+nQ) = C(m*,n*), thus proving our Lucas-type theorem for Fibonomial-coefficient 
residues. 
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