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1. INTRODUCTION 

The well-known Eulerian numbers may be defined either by their generating function or as 
the coefficients of f'+n~k), k = 0,1,..., n, in the factorial expansion of tn. During their long history 
they were extensively studied (and frequently rediscovered) especially with respect to their 
number-theoretic properties and their connection with certain combinatorial problems (see [2], 
[3], [18], [19], and references therein). In the last decades, several interesting extensions and 
modifications were considered along with related combinatorial, probabilistic, and statistical 
applications ([4]-[8], [10], [12], [13], [15]). 

The present paper was motivated by the problem of providing a unified approach to the study 
of Eulerian-related numbers, which on one hand will be general enough to cover the majority of 
the known cases and give rise to new sequences of numbers, but on the other will show up the 
common mathematical properties of the quantities under investigation. 

In Section 2 we consider the expansion of a polynomial pn(t) in a series of factorials of order 
n and introduce the notion of /^-associated Eulerian numbers and polynomials. Explicit expres-
sions, recurrence relations, generating functions, and connection to other types of numbers are 
discussed. In Section 3 we first indicate how well-known results can be directly deduced through 
the general formulation and in the sequel discuss some additional interesting special cases. 
Section 4 deals with several statistical and mathematical applications. Finally, in Section 6, we 
proceed with a further generalization through exponential generating function considerations. A 
brief study of the most important properties of the generalized quantities is also included. 

2. THE /^-ASSOCIATED EULERIAN NUMBERS AND POLYNOMIALS 

Let {pn(t),n = 0,1,...} be a class of polynomials with the degree of p„(t) being n and 
po(f) = 1. The coefficients An^ of the expansion of pn(f) in a series of factorials of degree w, 
namely 

Pn(0 = ±Ajt + n
n-k) (2.D 

k=0 V J 

will be called the pn-associated Eulerian numbers. 
The respective polynomial 

4,(0 = £ 4 u ' * (2-2) 

will be referred to as the /^-associated Eulerian polynomial. 
In Proposition 2.1 we provide an expression for A„,k and An(i) through the polynomials 

Pn(i). 
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Proposition 2.1: 

"• An,k=±(-l)f* + l)pn(k-j). 
j=o V J J 

b. An(t) = (i-ty+lfjPnu)tJ. 
j=0 

Proof: Making use of expansion (2.1) for t-h-j and interchanging the order of summa-
tion, we obtain 

;=0 \ J J r=o j=0 \ J J\ 

By virtue of Cauchy's formula, we have 

»-l)<^+,)("+^;y^)=(-•)'-'|(";lX*T-l>(-l)'"'^ 
and the first part of the proposition follows immediately. Finally, substituting the explicit expres-
sion of A„ik in An{t) yields 

^ ( o = | z ( - i ) ' ^ n 
[7=0 V J J J [y=o J y=o 

It is worth mentioning that the numbers An^k can be expressed through finite difference 
operators as follows: If E is the displacement operator, V = 1 - E~l and 

p u)-lp»(t) iro-t-k 
t^}}) \0 otherwise 

then 
An,k={v"+lEkpn(t)lo. 

A lot of numbers used in Combinatorial Analysis can be defined as coefficients of the 
expansion of a polynomial in a series of factorials. Well-known cases are the (usual and non-
central) Stirling numbers of the second kind, the Lah numbers ([16], [18], [19], and references 
therein), and the Gould-Hopper numbers ([9], [14]). The author [17] stated some general results 
for the numbers Pn k appearing in the expansion of an arbitrary polynomial pn (t) in a series of 
factorials, i.e., 

/>»(') = IX*(0*- (2-3) 

The next proposition furnishes the connection between the two double sequences of numbers 
4 u andP,u. 

Proposition 2.2: The /^-associated Eulerian numbers Afhk are related to the numbers Pn^k 

defined by (2.3), by 
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4,.t = !.<•-»'-'jfyztyr,.!. (24) 

: ;=0 

Proof: Proposition 2. lb, by virtue of (2.3) yields 

A(0 = (l-0^1i^.yZ(0y^=2:7i^/(l-0',"/, 

and expanding (1 - t)n~J we deduce that 

y=0 k=j^ J J k=0[j=0 V ^ J 

Comparing the last expression to (2.2), we immediately derive equality (2.4). The truth of (2.5) 
can be easily verified by inverting relation (2.4). • 

We are now going to prove a result referring to recurrence relations satisfied by the numbers 
Ank when a certain recurrence holds true for the polynomials pn(f). More specifically, we have 

Proposition 2.3: If there exists a relation of the form 

^ + i ( 0 = ( ^ + / ? j A ( 0 + ( r ^ + ^ ) ^ - i ( 0 ? ri>\, (2.6) 
connecting three polynomials with consecutive indices, then the numbers An^ satisfy the next 
recurrence relation 

(2.7) 
+ [yn{n-2k+2)-28nUn-i,k-i+[-7n{n-k + 2) + 8Mn-i,k-2^ *>\. 

Proof: Employing Proposition 2. la and replacing pn+i(k-j) by virtue of (2.6), we obtain 

4»i.* = («»*+/» ji(-i)y("}^(*-y)-ant(-iyy("y2)^(*-y) 

Recurrence (2.7) is easily deduced by introducing the expressions 

"J2KH"-HA +2|,:,I+I,:,I. (ry-^4j-Hj-2 
in the four summands appearing above, and making repeated use of Proposition 2. la. • 
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It is worth mentioning that, in the special case yn - 8n = 0 [i.e., when the polynomials pn(t) 
have real roots], the resulting numbers An k consistitute a triangular array of numbers. 

In the remainder of this section we shall establish a connection between the exponential 
generating function (egf) of the polynomials pn(t) and the respective egf of the /^-associated 
Eulerian polynomials. The basic assumption made here is that the egf 

of the sequence of polynomials p„(t), n = 0, 1, ..., can be expressed in the form 

P(t,u) = g(u)exp[t(F(u)-F(0))] (2.8) 

with g(0) = 1. This setting is general enough to include a lot of important special cases with 
diverse applications to combinatorics, physics, and mathematical analysis itself, as will be 
indicated in the next section. We mention here in brief that the special case g(u) = 1 leads to the 
well-known exponential Bell polynomials which have been studied in great detail (see [1], [18], 
[19]). 

Proposition 2.4: If the polynomials pn(t),n = 0, 1, ..., have egf of the form (2.8), then the egf of 
the ^-associated Eulerian polynomials 

A(t,u) = ftArl(t)^-

is given by 

A(t, u) = g((l - t)u) J"' (2.9) 

where f{u) = Qxp[F(u)-F(0)]. 

Proof: By virtue of Proposition 2. lb, we find that 

n=0[j=0 J n- j=0 

and on making use of (2.8) we easily deduce the desired expression (2.9). D 

It is easily seen that A(t,u) is the double generating function of the numbers An^k and 
writing 

oo r oo » i 
k=0[n=k m ) 

we conclude that the (single) egf of the numbers An k,n = ky k + \,..., may be obtained by 
computing the coefficients of tk in the power series expansion of A(t, n) with respect to /. This 
is, in general, a difficult task. 
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3. SPECIAL CASES 

In this section we shall treat some important special cases of ^-associated Eulerian numbers, 
o6tameaf 6y making certain choices of the polynomials pn(t). 

a. If pn(t) - (t+r)n', then the expansion formula (2.1) indicates that Ank are the cumula-
tive numbers used by Dwyer ([12], [13]) to express the ordinary moments of a frequency 
distribution in terms of the cumulative totals. Now we have 

P(t,u) = e^», F(u) = u, f(u) = e", g(u) = er", an = \, Pn=r, r„=0, S„ = 0, 

and applying Propositions 2.1-2.4, we deduce that 

4 a = Z H ) ' ^ *)(* +r~jT ( s e e D w y e r [12], Theorem HI, p. 292), 

An(t) = (l-tr1ftU+r)"t\ 

where S_r(n, k) are the non-central Stirling numbers of the second kind (see [16]), 

4 + u =(k+r)Anfk+(n-k + 2-r)An,k_l (Dwyer[12], p. 294), 

1-t 
A(t, u) = exp[r(l - t)u] 1-t exp[(l-t)u] 

We mention here that the corresponding /^-associated Eulerian polynomials are closely related to 
the quantities Hn(r\t), which were studied in detail by Carlitz [2]. Note also that, for r = 0, the 
numbers Ank coincide with the usual Eulerian numbers (see [2], [18], [19]) 

A,k=t(Mn1l\k-jr (3i) 
;=0 V J J 

while SQ(n, k) - S(n, k) are the Stirling numbers of the second kind. 

b. If pn(t) = (st + r)n, then Proposition 2.1a yields 

;=o \ J J 

where A(n, k, s, r) are the composition numbers. These numbers, as pointed out in [7], have 
many applications in combinatorics and statistics. It is obvious that to comply with our general 
setting, we must take 

P(t,u) = (l + u)"+r, F(u) = slog(l + u), f(u) = (\ + uY, g(u) = (l + u)r, 
oc„=s, pn=r-n, yn=d„ = 0, 
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and applying Propositions 2.1-2.4 we may derive the explicit expressions, recurrence relations, 
and egf of AnJc given by Charalambides [7]. Note that the numbers Pnk = G(n, k\ s, r) of Propo-
sition 2.2 which appear in the expansion 

k=0 

are the so-called Gould-Hopper numbers (see [9], [14]). Note also that the limit l i m ^ ^ $~"AnJc 
yields the Dwyer numbers mentioned in a. We finally mention that the special case r = 0 corre-
sponds to the numbers 

A,k = t(-l)J^jiy<*-J))n = s"A,k(S-1) (3.2) 

where AnJc(-) are the polynomials studied by Carlitz ([4], Ch. 7). As Carlitz, Roselle, & Scoville 
[5] pointed out, for s < 0, the number of ordered sets (ii,i2, • ..,/„) with/, e{l, 2, ...,|s|} and 
showing exactly k increases between adjacent elements, is equal to 

\AnJn\ = {-\yA„,kln\. 

c. The author [17], motivated by the problem of providing explicit expressions for the dis-
tribution of two-sample sums from Poisson and binomial distributions, one of which is left-
truncated, introduced the r - q polynomials 

r(t;s9r) = — f x V ^ l , qrj(t;r) = —\xre-t^] . 
"V J dx"[ J*=i " dxn[ J*=i 

Both sequences of polynomials comply with the restrictions set in the general context and give 
rise to two double sequences of numbers which, to our knowledge have not appeared in the litera-
ture yet. More specifically, we have 

(i) The polynomials rn{t\ s, r) satisfy the recurrence 

rn+l(t; s, r) = (r + st-n)r„(t; s, r) + rnr„^(t'9 s, r), n > 1, 
r0(t;s,r) = l, rx(t;s,r) = $t + r 

and have egf 

r(t,u;S,r) = fdrn(t;s,r)^- = (l + uy'eru. 

Therefore, 

F(u) = slog(l + u), f{u) = (l + u)s, g(u) = eru, a„=s, 0„=r-n, y„=0, S„=rn, 

and applying Propositions 2.2-2.4 for the numbers defined by the expansion 
rt+n-k^ 

4=0 
we conclude that 

A+i,k=(sk + r-n)An^k+[s(n-k + 2) + n-r]An^k_x + m[An_hk -2An_uk_x + An_hk_2], n>\9 

Ao = 1> Ao = r> Ai = s-r, 
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Ait, u) = ± ±AnJ> U- = e^'> n
1 ; ' . 

k 

An,k = T.(-Vk-JJ\"kJM(''J;s,r), 
7=0 y Jy 

where i?(ft, &; s, r) are the numbers appearing in the convolution of two-sample sums from a 
binomial and a zero-truncated Poisson distribution (see [17]). Note that the numbers An^k defined 
above give, in particular for r = 0, the quantities (3.2). 

(ii) For the polynomials qn(t; r), we have 

9n+i(tlr) = (r + t-n)qn(t;r)^-ritq„_l(tX n > 1, 
q0(t;r) = l, ql(t;r) = t + r, 

q(t,u;r) = fjqn(t;r)^- = (l + u)ret\ 

Hence, 

F(u) = u, f(u) = eu
9 g(u) = (l + u)r, a„ = l, 0„=r-ri, yn=n, S„ = 0, 

and applying Propositions 2.2-2.4 for the numbers defined by the expansion 

k=o 
we obtain 

\k-\ An+l,k=(r-n + k)A^k+(2n-k-r + 2)A^ 

+n{kA„_lk+(n-2k + 2)An_lk_l-(n-k + 2)An_hk_2}, n>\ 

\-t 
«=oit=o " ! l - r exp [ ( l - / )w] 

7=0 
where 

e(n,-t;r) = Xf"W^(7^) 
y=t 

(3.3) 

are the numbers appearing in the convolution of two-sample sums from a Poisson and a zero-
truncated binomial distribution (see [17]). As can easily be verified from egf (3.3), the special 
case r = 0 yields the usual Eulerian numbers (3.1). 

d. The Hermite Polynomials 

2 dnet2 

Hn(t) = (-iyet 

dtn 
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satisfy the recurrence 
H„+1(t) = 2tH„(t)-2nH„_1(t), n>\, 

H0(t) = l, Hv{t) = 2t, 
while their egf is 

Thus, 
F(u) = 2i#, f(u) = e2\ g(u) = e~ul, an = 2, .fin = r „ = 0, Sn = -2n, 

and the next results for the Hermlte-associated Eulerian numbers An^k are immediate conse-
quences of Propositions 2.1-2.4: 

A,& -=t(-iy(,,;1)ffl>(*-^ 

#„( ' ) = I X * ( 0 * , where P„,, = - ^ £ f j l ^ K > ' 

. 4 H . I . * = 2 * 4 U + 2 ( « - * ' + 2 H , * - I - ^ ( A - i . * - 2 4 u - i + 4i-i.*-2}» "^!» D 4 ) 

rft=o " ! l - rexp[2( l -0«] 

e. Another important class of polynomials encountered in several applications, especially in 
mathematical physics, consists of the (generalized) Laguerre polynomials lS^(t), defined by 

L(p)(t) = -e'rp— [e-'f^l n = 0,l,...,p>-\. 
" W n! dt" 

Considering the polynomials 

Ln(t;p) = n\L^(t) = e'r^[e-'t"+"l n>0,p>-l, 
at 

we get [making use of the respective results on L^n
p\t)] 

L0(t;p) = l, Li(t;p) = -t + p + l, 

Therefore, 

0 0 iin oo r f 

u-\ l ^ - I J 
a „ = - l , fin = 2n + p + l, r„=0, Sn = -n(n + p), 

\t\<l 
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and applying Propositions 2.1-2.4, we deduce the following properties of the Laguerre-
associated Eulerian numbers Ank\ 

4.* = i(-i)y("t1]4(*-./;/>), y-o v J , 

L„{t) = fdP„,k(t)k, where P ^ = ^ £ f c { k y, 
k=0 * ! / = 0 V J J 

^ u = ( 2 « + / ' + l -*K,t - (3n- t+/ ' + 3 )4w 
-n(n + p){A„_lk -24_1>t_, + 4_u_2}, » ^ 1, 

^,«)=iix/4= 1 1-/ 
^oto "' n\ [l-(l-t)uY+l i - . e x p f ^ ^ } ' 

4. APPLICATIONS 

In the present section we consider a number of applications involving the /^-associated 
Eulerian numbers and polynomials. 

The first application refers to the computation of the mean value of polynomial functions of 
logarithmic random variables. More specifically, consider a random variable X with the 
logarithmic series distribution 

1 6X 

P[X = x] = ~ , x = l,2,..., 0<$<\, 
log(l-0) x 

and let pn{-) be a polynomial of degrees. Then 

v„=E[Xpn(X)] = clf,p„(x)dx-pn(0)\ C = - l / log( l -0 ) , 

and employing the ^-associated Eulerian polynomials An(t), we may write, by virtue of Proposi-
tion 2. lb, 

v w = c { ( l - ^ - " - ^ ( ^ - / > n ( 0 ) } . (4.1) 

Formula (4.1) is useful for the derivation of recurrence relations for the quantities vn [mean value 
of an (n + l)-degree polynomial with no constant term] by making use of the respective recur-
rence relations of the Eulerian polynomials An{6). Note also that, under the assumptions made in 
Proposition 2.4, the egf of vw, n = 0, 1, ..., is given by 

00 un 0f(M) 
\-9f{u)' 

We mention in particular (see Section 3, cases a and b) that 
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YJE[X{X + rY]U- = c.^-—; 
„=o «! 1-te" 

r+s V i r r w v^ \ iu 0(1+ w) 
2,£[AX&r + r ) J — = c- v 

„=0 n\ 1 -0(1 +1/)5 

The second statistical application of the /?„-associated Eulerian numbers is in the computation 
of the polynomial mean of a frequency distribution with the use of cumulative totals. This method 
was used by Dwyer [12], [13] for the computation of the moments and by Charalambides [7] for 
the factorial moments. The main advantage of the method lies in the fact that the many 
multiplications involved in the usual computation process are replaced by additions. Since the 
generalization presented here is rather straightforward, we omit the details and state only the 
results. Let fx denote a frequency distribution and 

C/* = 5 X Cm+lfx=C(CmfxX m = 1,2,..., 
j>x 

the successive frequency cumulations. Then, employing Dwyerss successive cumulation 
theorem, we may easily deduce that for any polynomial /?„(•), 

where An k are the Eulerian numbers corresponding to pnQ). 
As a last application, we consider the problem of evaluating the sum of the values of a 

polynomial pn(-) over the first m + 1 nonnegative integers, namely, S = H™=o p„(x) • Because of 
(2.1) we may write 

x=Q k=0 v J k=0 x = 0 v 

and since the inner sum equals (m+;;f+1), it follows that 

lP,M-iAjm+"„-+1 + i) (42) 
x=0 k=0 v y 

Consider in particular the next two special cases: 
(i) Let pn(f) = p3(t) = (st)3. Then, by virtue of (3.2) (or employing the respective recur-

rence relation for An^k) we get A30 = 1, A3l = (s)3, A32 = 4($ + l)3., A33 = (s + 2 ) 3 , and 
(4.2) yields 

Z(^)3=[ 4 Y^\ 4 J + 4 0 + 1)3[ 4 J + (̂  + 2)3^ 
(ii) Let p„(t) = H2(t) denote the Hermite polynomial of degree 2. Recurrence (3.4) yields 

A ^ = - 2 , A 2 l = 8, A ^ = 2, and, therefore, 

X # 2 ( * ) = -2I 3 J + 8 [ 3 J + 2 [ 3 J = 3 i2m + m~3)-
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5. THE GENERALIZED /^-ASSOCIATED EULERIAN NUMERS 
AND POLYNOMIALS 

Carlitz & Scoville [6] introduced the generalized Eulerian numbers in connection with the 
problem of enumerating (a, 6)-sequences (generalized permutations). These numbers, which are 
also related to Janardan's [15] generalized Eulerian numbers (used for the statistical analysis of an 
interesting ecology model), were extensively studied by Charalambides [8]. Recently, Charalam-
bides & Koutras [10] considered an alternative ecology model and introduced a double sequence 
of numbers that are asymptotically connected with the numbers of Carlitz & Scoville. 

In the present section we provide a unified approach to generalizations of this kind, bringing 
into focus the common properties of them and supplying the means for further extensions. 

Let {pn(t\ n - 0,1,...} be a class of polynomials with egf given by (2.8). Then, the numbers 
A^k{a,h) with egf 

A(t,u;a9b) = f, iA^k(a7b)tk^ = g((l~t)u)r((l-t)u)\ } " * \ (5.1) 

will be called generalized /^-associated Eulerian numbers. Similarly, the polynomials 
n 

A„(t;a,b) = '£A„tk(a,b)tk 

k=0 

will be named generalized /^-associated Eulerian polynomials. It is evident that 

A„ik(P,l) = A„tk, An{f, 0,1) = 4,(0. 

Proposition 5.1: 

b. 4,.t(«,6)=t(-i)f+;+*)(a+^*^'-1)p>+*-70. 

Proof: Expanding the term [1 - tf((\ - t)u)l{a+b) of (5.1) yields 

A(t,U-,a,b) = (l-ty+bfj(a+by-iy{g((l-t)u)fa+J((l-t)u)}, 

and applying (2.8) on the extreme right term, we obtain 

A(t,u;a,b) = (l-trbti(a + by-iyPAa + j ) ^ ^ . 

The first part of the proposition is readily established by interchanging the order of summation and 
considering the coefficient ofunln\ in the resulting power series. The second part follows imme-
diately from a by expanding (1 - t)n+a+b and performing the multiplication of the two series. D 

We note that, in particular, for p„(t) = tn mdpn(t) = (st)n, the numbers appearing in [6], 
[8], [15], and [10], respectively are obtained. 
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Taking the limit as f -> 1 in (5.1), it follows that 

limA(t,u-,a,b) = [l-f\0)ur-b=i(a+b^n~l)[f'(0)Tu", 

implying 

An(l;a,b) = fdA^k(a,b) = (a + b+n-l)n[f'(0)T. (5.2) 
k=0 

Hence, 

fn(x;a,b) = P[X = x} = ">xK , x = 0,l,2,...,/i, (5.3) 

defines a legitimate probability function (provided that the ratios are nonnegative for all x = 0, 1, 
..., ri) which will be called generalized /^-associated Eulerian distribution. It is straight-
forward that the probability generating function of (5.3) can be expressed as 

E[tx]=Yf(x;a,by= MifiV 
to (a + *+/i- l)B[/ ' (0)]" 

while the factorial moment generating function is expressed as 

to r\ (a + A + / i - l )„[ / ' (0)r 

The next proposition provides recurrence relations for the numbers A„t k (a, b) and is useful 
for tabulation purposes [we recall also formula (5.2), which can be employed as a convenient 
check]. 

Proposition 5.2: Under the assumption that (2.6) is true, the numbers Antk(a9 b) satisfy the next 
recurrence relation: 

+ [ ( ^ % n + ^ J A - u ( ^ * ) + [ r „ ( « + * - 2 4 - a + i ) - 2 J j A - 1 ) W k * ) (5.4) 

+ [-yn{n + b-k + l) + 8n}An_hk_2{a,b\ n>\. 

Proof: It is not difficult to verify that the auxiliary functions 

C„(t;a,b) = ±{a+by-iy+Jp„(a + j) = ta(l-ty^a+bUn(t;a,b) 

satisfy the difference-differential equation 

Cn+l(t;a,b) = t — {anCn(t;a,b) + rnC^ at 
Replacing Cn(t;a,b) in terms of An(t;a,b), we obtain a difference-differential equation for 
An(t; a, b), and (5.4) is finally obtained after some lengthy but rather straightforward calculations. 
We mention that a proof similar to the one used in Proposition 2.3 could also be established; how-
ever, it is much more complicated. • 
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In the remainder of this section we are going to state some interesting results for generalized 
/^-associated Eulerian numbers whose generating polynomials have real roots, i.e., 

(5.5) A,+i(0 = tl(akt+fik) = (a„t+/3„)p„(t\ n > 0, 
k=0 

Po(t) = l 
In this case we have: 

1. The numbers A„9 k (a, b) satisfy the triangular recurrence relation 

^ u ( M ) = [(*+*)*„+£ J 

2. The probability function f(x;a,b) and the respective factorial moments u^(n;a,b) = 
E[(X)r ], r = 0,1 , . . . , satisfy the recurrences 

(a + h + n)f'(0) (a + b + n)f'(0) 

/ 1 ZA rian(n + b-r + l)-/3n] an(a + b + n-r) 
^(r)V ' (a + i + / i ) / ' (0) ^( r 1)V ' ; ( a + i + n ) / ' ( 0 ) ^ r > v ? ' ; 

3. If aan + {fn ^ 0 for all n = 0, 1, ..., then the polynomials 4 , ( f ; a , b) have n distinct real 
nonpositive roots (an easy way to prove this is to verify first that 

En(t;ayb) = (l-ty{n+a+b)t/3"/a"+aAn(t;ayb) 

satisfies a difference-differential equation of the form 

a„t'^-E„(t;a,b) = E„+1(t;a,b)). 
at 

Hence: 
(a) A„9 k (a, b) is a strictly concave function of &; 

(b) the distribution {fn(x\a,b), JC = 0 , 1 , ...,«} is unimodal either with a peak or with a 
plateau of two points (see [11]); 

(c) Any random variable Xobeying (5.3) can be expressed as a sum of n independent zero-
one random variables. 

We recall that the generalized Eulerian numbers studied in [6], [8], [10], [15], along with 
their generalizations produced by the choices pn(t) = (t + r)n,pn(t) = (st + r)n (see Section 3, 
cases a and b), own the properties 1-3 above, since they are generated by polynomials of the form 
(5.5). 

ACKNOWLEDGMENT 

The author wishes to thank the referee for comments that were very useful in improving the 
presentation of this paper. 

56 [FEB. 



EULERIAN NUMBERS ASSOCIATED WITH SEQUENCES OF POLYNOMIALS 

REFERENCES 

1. E. T. Bell. "Exponential Polynomials." Ann. Math. 35 (1934):258-77. 
2. L. Carlitz. "Eulerian Numbers and Polynomials." Math. Magazine 33 (1959):247-60. 
3. L. Carlitz. "Some Remarks on the Eulerian Function." Univ. Beograd Publ. Electrotehn. 

Fat (1978):79-91. 
4. L. Carlitz. "Degenerate Stirling, Bernoulli and Eulerian Numbers." Utilitas Math. 15 

(1979):51-88. 
5. L. Carlitz, D. P. Roselle, & R. A. Scoville. "Permutations and Sequences with Repetitions by 

Number of Increases." J. Comb. Theory 1 (1966) :3 50-74. 
6. L. Carlitz & R. Scoville. "Generalized Eulerian Numbers: Combinatorial Applications." J. 

fur die reine undangewandte Mathematik 265 (1974): 110-37. 
7. Ch. Charalambides. "On the Enumeration of Certain Compositions and Related Sequences of 

Numbers." The Fibonacci Quarterly 20.2 (1982): 132-46. 
8. Ch. Charalambides. "On a Generalized Eulerian Distribution." Ann. Inst. Statist. Math. 43 

(1991): 197-206. 
9. Ch. Charalambides & M. Koutras. "On the Differences of the Generalized Factorials at an 

Arbitrary Point and Their Combinatorial Applications." Discrete Mathematics 47 (1983): 
183-201. 

10. Ch. Charalambides & M. Koutras. "On a Generalization of Morisita's Model for Estimating 
the Habitat Preference." Forthcoming in Ann. Inst. Statist. Math. 46 (1994). 

11. L. Comtet. Advanced Combinatorics. Dordrecht, Holland: Reidel, 1974. 
12. P. S. Dwyer. "The Computation of Moments with the Use of Cumulative Totals." Ann. 

Math Stat 9 (1938):288-304. 
13. P. S. Dwyer. "The Cumulative Numbers and Their Polynomials." Ann. Math. Stat. 11 

(1940):66-71. 
14. H. W. Gould & A. T. Hopper. "Operational Formulas Connected with Two Generalizations 

of Hermite Polynomials." Duke Math. J. 29 (1962):51-63. 
15. K. G. Janardan. "Relationship between Morisita's Model for Estimating the Environmental 

Density and the Generalized Eulerian Numbers." Ann. Inst. Statist. Math. 40 (1988):439-50. 
16. M. Koutras. "Non-Central Stirling Numbers and Some Applications." Discrete Mathematics 

42(1982):73-89. 
17. M. Koutras. "Two Classes of Numbers Appearing in the Convolution of Binomial-Truncated 

Poisson and Poisson-Truncated Binomial Random Variables." The Fibonacci Quarterly 28 
(1991):321-33. 

18. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958. 
19. J. Riordan. Combinatorial Identities. New York: Wiley, 1968. 

AMS Classification Numbers: 05A10, 05 Al 5,11B73 

1994] 

• • • 

57 


