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1. INTRODUCTION AND PREPARATORY RESULTS 

Let Pn,n = 0,1,2,..., be a sequence of integers that is defined by its exponential generating 
function/^) as 

That i s ^ ) is a Hurwitz series in x. 
As regards Bell numbers [fix) = exp{exp{x}-l}], Lunnon, Pleasants, & Stephens [4] and 

Gessel [1] showed that, for each positive integer n, there exist integers a0,aly ...,arj_1 such that, for 
all m > 0, n > 0, 

Pm+f1+an_lPm+n_l + "'+a0Pm^0 (modw!). (2) 

Also, as regards tangent numbers [/(x) = tanx], Ira Gessel [1] showed that, for each posi-
tive integer n, there exist integers bub2, •.-,bn_l such that, for all m > 0, n > 1, 

Pnnm +h„-lPm+n„l + '"+blPm+l = 0 (mod (7i-l)!w!). 

In the same paper, congruences similar to the above are obtained concerning the derangement 
num-bers and the numbers defined by fix) - (2-exp{x})_1 and/(x) = exp{x + x2 /2} . In the 
same area of research, Kyriakoussis [3] proved the congruence (2) in the case in which 

OO 

fix) = exp{g-(x)}, for g(x) = X CjXJ I j , 

where the Cj,j = l,2,..., are integers.In [1], Gessel obtained the above congruence by introducing 
the following method: 

Using Taylor's theorem and (1), we have 

f(x+y) = fJf{k\*)ykik\, fw(*) = ̂ £P-- (3) 

Setting y - S(z) in (3), where the function S(z) is a Hurwitz series in z with S(0) - 0 and 
S'(0) - 1 and multiplying both sides by some Hurwitz series H(z) with 7f(0) = 1, we get 

H(z)f(x + S(z))=fif^\x)H(z)(S(z))k/kl 
k=0 

If the flmctions H(z) and Siz) are chosen appropriately, the coefficients of^z" on the left will be 
integral. Then the coefficients of ̂ r^- on the right is divisible by n\. 
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In other words, Gessel's method can be applied to a given Hurwitz series fix) if and only if 
there exist Hurwitz series S(z) and H{z) with S(0) = 0, S'(0) = 1, and H(0) = 1, such that, for all 
integers m and n, the coefficients of~-z" in H(z)f(x + S(z)) is an integer. That is, 

co co m 

H(z)f(x + S(z))=Z I0(I», /I)^J-Z", (4) 
m=0 n=0 m 

where the numbers Q(m, ri) are integers for all m and n. 
In this paper we establish a necessary and sufficient condition on the function fix), given by 

(1), for Gessel's method to be applied, and we show the corresponding congruence concerning the 
numbers P„, n = 0,1,2,... . Moreover, we consider a wide class of functions^) to which Gessel's 
method can be applied. 

It is well known that Hurwitz series are closed under multiplication and that, if f(x) and g(x) 
are Hurwitz series with g(0) = 0, then the composition (f°g)(x) is also a Hurwitz series. In 
particular, (g(x))k I k! is a Hurwitz series for any nonnegative integer k. 

Hurwitz series in two variables are of the form 
^m i t " 

where the numbers amn are integers. The properties of these series we will need follow from those 
for Hurwitz series in one variable. 

We also need the following results: 

a. Let s~l(x) be the inverse function of the Hurwitz series s(x) with s(0) = 0. Then s~l(x) is 
also a Hurwitz series with s~l(0) - 0, if 4-s(x)\ = s'(0) = 1. 

^* 'x—0 

b. Let h(x) be a Hurwitz series. Then the function -j^-r = (h(x))~l is a Hurwitz series if and only 
ifA(0) = l. 

2. THE MAIN RESULTS 

A necessary and sufficient condition for Gessel's method to be applied is given by the follow-
ing theorem. 

Theorem 1: Let f(x) be the exponential generating function of the integers P„, n - 0,1,2,..., as 
given by (1). Then Gessel's method can be applied to the Hurwitz series f(x) if and only if there 
exist Hurwitz series s(y) and h(y) with s(0) - 0, s'(0) = 1, and h(0) - 1, such that 

f(x+y) = h(y)\ TGn(x)(s(y)y (5) 

where the functions Gn (x), n - 0,1,2,..., are Hurwitz series in x. 

Proof: From relation (4) we can easily obtain relation (5), setting z - s(y) where s is the 
inverse function of £ [^(^O))]-1 = h(y) and 2^ = 0 gO, n)xm lm\ = G„(x) 
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From our comments in section 1, we can easily see that s(y) andh{y) are Hurwitz series my 
with s(0) = 0, ̂ '(O) = 1, and h(0) = 1. Conversely, from relation (5) we obtain, in the same way, 
relation (4). 

Example 1: f(x) = tan x and we have 
00 

f(x+y) = tanx + (secx)2^(tanx)w_1(tan3;)". 

Consequently, h(y) - 1, G0(x) = tanx, Gn(x) = sec2x(tanx)"_1, n = l, 2,..., s(y) = tanjy, s_1(z) = 
arctanr, and Theorem 1 can be applied. 

Now we show the corresponding congruence concerning the numbers P„, n - 0,1,2,... . 
From relations (1) and (3), we obtain 

f(x+y)=ZI.p*»* 
m=0 k=0 m\ k\ 

Comparing relations (5) and (6), we obtain 

m=0 k=0 m] K-
ZG„(x)(s(y)y 
n=0 

(6) 

(7) 

Setting y = s l(z) in (7) and multiplying both sides by (h(s l{z))) l, we obtain 

w =o fc=o zw! *! 
O0 OO 

m=0 n=0 m\ n\ 

where the integers Q(m, n) are given by the relation 

flQ(m,n)xm/m\ = G„(x). 
m=0 

(8) 

(9) 

From our comments in section 1, we can define the integers D(n, k), k = 0,1,..., n, n = 0, 1, 2, ..., 
by 

YD(n,k)z"ln\ = (h(s-l(z))) u_^{s-\z)f 
n=k k\ 

(10) 

Substituting (10) into (8) we get, on using the relation D(0,0) = i, 
oo oo / n 

m=0 n=0\k=0 

Equating coefficients of ^-^-, we get 

xm zn \ y.m n oo oo 

— — =T Yn\Q{m,ri)-
jm\ n\ m=0n=0 ml n\ 

^D{n,k)Pm+k=n\Q(m,n). 
k=0 

(11) 
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Now we consider a wide class of Hurwitz series fix) to which Gessel's method can be applied, 
by the following theorems. 

Theorem 2: Gessel's method can be applied to the Hurwitz series^), if 

f(x) = (l+Mx)Tepc, (12) 
where the constants a, J3, and y are integers and the function g(x) is a Hurwitz series such that 

gix + y) = ^iH„(xXs(y))n, H0(0) = 0, (13) 
n=0 

where the function s(y) is a Hurwitz series in>> with s'(0) = 1? ^(0) = 0, and the functions Hn{x), 
n = 0,1,2,..., are Hurwitz series in x. 

Proof: From relation (12) we have, on using (13) and some well-known rules of multiplica-
tion of series 

f(x+y) = [l+0g(x+y)aeyix+y)] = 

7 7 = 1 

l+/3H0(x) + ^Hn(x)(s(y)y 

[l+yStf0(*)]V<*+'\ 

0y(x+y) 

where H*(x) = J3Hn(x)/[\ + 0Ho(x)] or 

f(x+y) = [l+fiH0(x)Yer™±(« 
]=Q 

=[I+/H'0(X)]V^> i+5;[5 a 

^H:(x)(s(y)r 

£ (s(y)T 2 K (*)K (x)- H*nj (x) 
m=j 

where the inner sum is extended over all orderedy'-tuples (nl7n2, ...,rij) of positive integers such 
that nx + n2 H vrij =m or 

f{x+y) = e"[\ + pH«(xj\aeHl + Yj Z^s^w-^cx) poor 
or 

/ (^j)=Mj)iGm(*wr, (14) 
m=0 

where /K» = e^, G0(x) = [ l + ^ o W f ^ and 

^ GM(*) = [l + /Br0(*)]V 

(the inner sum is extended as before). 

£^ ) i / / ; (*)•••#;,(*) m = l,2,..., 
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Since Gm(x), m = 0,l,2,..., are Hurwitz series in x and s(y), h(y) are Hurwitz series in y with 
s(0) = 0, .s'(0)-l, and/?(()) = 1, we have, on using relation (14) and Theorem 1, that Gessel's 
method can be applied. 

Example 2: f(x) - (l+/?tanx)a, a an integer. We have y = 0, g(x) - tanx, and 
00 

g(x + y) = tanx + (l + tan2 x)]T (tanx)"-1 (tan j;)". 
n=l 

Consequently, s(y) = tany,H0(x) = tanx, Hn(x) = (l + tan2 x)(tanx)w~1,« = 1,2,..., and Theorem 
2 can be applied. 

Example 3: f(x) = £?>*(l-/?(ex - l))"a, where a, fi, y are integers. We have g(x) = -(ex -1) 
and g(x + y) = -(ex -l)-ex(ey -I) Hence, s(y) = ey-l, HQ(x) = -(ex -1), Hl(x) = -ex, and 
Theorem 2 can be applied. 

Note that the above function f(x) is the exponential generating function for the moments for 
the Meixner polynomials. 

Theorem 3: Gessel's method can be applied to the Hurwitz series f(x) if 

/ ( x ) = exp{F(x)}, (15) 

where F(x) is a Hurwitz series in x such that 

F(x + y) = Z(x) +fXO0(K*)y IA (16) 

where L(x) is a Hurwitz series in x with Z(0) = 0, I^fy) is a Hurwitz series in y with i^,(0) = 0, 
Rj (y), 7 = 1,2,..., are power series in s(y) with integer coefficients, s(y) is a Hurwitz series in y 
with 5(0) = 0, $'(0) = 1, and r(x) is a Hurwitz series in x with r(0) = 0. 

Proof: Introducing the exponential Bell polyomials Bn=Bn(b1,b2,'...,bn),n = 0,l,2,...9 that 
may be defined by their exponential generating function as 

£ 5 / 7 / i ! = exp{#0} 
w=0 

where ^(f) = ZJLi ̂ ^ /y!, we get 

expK* y O0(r(x)y / j ! = I X W(j) , . . . , ^ ( j ) ) ( r (x ) r //il. (17) 

Explicit expressions for Bn = Bn(blyb2,...7bn) as functions of bx, &2,..., bn are given in Kendall 
& Stuart ([2], p. 69). 

Since Rj(y\ j - 1,2,..., are power series in £(>>), we have that Bn,n = l,2,..., are also power 
series in s(y). Therefore, 

JB„(JR1(j),...,^(j)) = ^ a „ i / ( ^ ) ) ' ) /i = l,2,..., (18) 
j=0 

where the numbers an y, 1 = 0,1,2,..., are integers. 
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From relation (15) we have, on using relations (18), (17), and (16), 

f(x+y) = h(y)fjGi(x)(s(y)y, (19) 
7=0 

where h(y) = exp[i^0/)] and G,(x) = {^p[L(x)]}^=0anJ(r(x)y ln\, i = 0,1,2,... . Since 
i?o(0) = L(0) = r(0) = 0, we have that h(y) is a Hurwitz series in y with h(0) = 1 and Gt (x),i = 0, 1, 
2, ..., are Hurwitz series in x. We also have s(0) = 0 and s'(0) = 1. Consequently, using Theorem 
1, we conclude that Gessel's method can be applied. 

Example 4: f(x) = expJEJl x ctxl I / ] , cx,, i = 1,2,..., integers. We have F(x) = £ * x ctxl I i and 

F(x+y)=flcl(x+yy n=f>, /otp.Vy-' 

= F(x) + F(y) + fj(ci /OZp/Vy--' =F(*) + FC) + £JRy0'y /J!, 
where 

=/+i v J ; ; i=i 
y , 7=1,2,. . . 

Thus, L(x) = F(x),R0(y) = F(y),Rj(y),j = 1,2,..., are power series in y with integer coeffi-
cients, s{y) = j / , r(x) = x, and Theorem 3 can be applied. 

Note that, for q = 0,i = 3,4,..., the above / (x ) is the exponential generating function for the 
moments for the Hermite polynomials. 

Example 5: f(x) = exp{a(ex -1) - px), a and J3 integers. We have F(x) = a(ex -1) + /& and 
F(x+y) = a(ex+y -1) +/3(x + j/) = F(x) + F(y) + ( ^ - l)a(ex -1). Consequently, Z(x) = F(x), 
R^iy) = i 7 ^ ) , ^i(y) = ^ - 1 , ^Cv) = ^ - 1 , r(x) = a(ex -1), and Theorem 3 can be applied. 

Note that, for /? = 0, the above f(x) is the generating function for the moments for the 
Charlier polynomials. 
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