p-ADIC CONGRUENCES FOR GENERALIZED
 FIBONACCI SEQUENCES

Paul Thomas Young
Department of Mathematics, University of Charleston, Charleston, SC 29424
(Submitted November 1991)

1. STATEMENT OF RESULTS

Let $\lambda, \mu \in \mathbb{Z}$ and define a sequence of integers $\left\{\gamma_{n}\right\}_{n \geq 0}$ by the binary linear recurrence

$$
\begin{equation*}
\gamma_{0}=0, \gamma_{1}=1 \text {, and } \gamma_{n+1}=\lambda \gamma_{n}+\mu \gamma_{n-1} \text { for } n>0 . \tag{1.1}
\end{equation*}
$$

It is well known [9] that the polynomial $P(t)=1-\lambda t-\mu t^{2}$ has the property that

$$
\begin{equation*}
P(t)^{-1}=\sum_{n=1}^{\infty} \gamma_{n} t^{n-1} \tag{1.2}
\end{equation*}
$$

is the ordinary formal power series generating function for the sequence $\left\{\gamma_{n+1}\right\}_{n \geq 0}$ (cf. [12]. Furthermore, it is easy to see [1] that when the discriminant $\Delta=\lambda^{2}+4 \mu$ of $P(t)$ is nonnegative and $\lambda \neq 0$, the ratios $\gamma_{n+1} / \gamma_{n}$ converge (in the usual archimedean metric on \mathbb{R}) to a reciprocal root α of $P(t)$. In this article we show that ratios of these γ_{n} also exhibit rapid convergence properties relating to $P(t)$ in the p-adic metrics on \mathbb{Q}. Precisely, we prove that for all primes p and all positive integers m the ratios $\gamma_{m p^{r}} / \gamma_{m p^{r-1}}$ converge p-adically in \mathbb{Z}; this is shown via congruences that extend those predicted by the theory of formal group laws (cf. [2], [7], [10]) or the theory of p-adic hypergeometric functions (cf. [13]). When p does not divide $\gamma_{m} \Delta$, these ratios converge to the quadratic character of Δ modulo p; otherwise, the limit is p or zero. Moreover, when $p>3$ and p divides Δ, one obtains a supercongruence (cf. [2], [5], and eqs. (1.6), (3.8) below). These results are then used to give formal-group-law interpretations of some generalized Lucas sequences $\left\{\lambda_{n}\right\}=\left\{\gamma_{2 n} / \gamma_{n}\right\}$, and of the sequence $\left\{T_{n}\right\}=\left\{F_{5_{n}} /\left(5 F_{n}\right)\right\}$ (where $\left\{F_{n}\right\}$ is the familiar Fibonacci sequence associated to $\lambda=\mu=1$) which has been studied in [3]. The results are as follows.

Theorem 1: (i) If p is a prime not dividing $\gamma_{m} \Delta$, then for all $r \in \mathbb{Z}^{+}$we have

$$
\begin{equation*}
\frac{\gamma_{m p^{r}}}{\gamma_{m p^{r-1}}} \equiv(\Delta \mid p)\left(\bmod p^{r} \mathbb{Z}\right) . \tag{1.3}
\end{equation*}
$$

(ii) If p divides $\gamma_{m} \Delta$, then for all $r \in \mathbb{Z}^{+}$such that $\gamma_{m p^{r-1}} \neq 0$ we have

$$
\begin{equation*}
\frac{\gamma_{m p^{r}}}{\gamma_{m p^{r-1}}} \equiv L\left(\bmod p^{r} \mathbb{Z}\right) \tag{1.4}
\end{equation*}
$$

where $L=0$ or $L=p$ according to whether or not p divides μ.
(iii) The congruence (1.4) holds modulo $p^{r+1} \mathbb{Z}$ if $p>2$ and p divides γ_{m} but not Δ; or if $(\Delta \mid p)=0$ and either $p>3$ or $p=3$ and $r>1$.

Corollary 1: (i) For all primes p and all $m, r \in \mathbb{Z}^{+}$we have

$$
\begin{equation*}
\gamma_{m p^{r}} \equiv(\Delta \mid p) \gamma_{m p^{r-1}}\left(\bmod p^{r} \mathbb{Z}\right) . \tag{1.5}
\end{equation*}
$$

(ii) If p divides γ_{m} but not Δ, then for all $r \in \mathbb{Z}^{+}$we have

$$
\begin{equation*}
\gamma_{m p^{r}} \equiv L \gamma_{m p^{r-1}}\left(\bmod p^{2 r} \mathbb{Z}\right) \tag{1.6}
\end{equation*}
$$

where $L=0$ or $L=p$ according to whether or not p divides μ.
Theorem 2: Suppose $\lambda=1$ and $\mu \neq-1$, and for $n>0$ set $\lambda_{\mathrm{n}}=\gamma_{2 n} / \gamma_{n}$. Then the formal power series

$$
\begin{equation*}
\ell(t)=\sum_{n=1}^{\infty} \lambda_{n} \frac{t^{n}}{n} \tag{1.7}
\end{equation*}
$$

is the logarithm of a one-dimensional formal group law over \mathbb{Z} which is strictly isomorphic over \mathbb{Z} to the formal multiplicative group law $\mathbb{G}_{m}(X, Y)=X+Y+X Y$.

Theorem 3: Let $\left\{F_{n}\right\}$ denote the usual Fibonacci sequence, i.e., the solution to (1.1) in the case $\lambda=\mu=1$, and for $n>0$ set $T_{n}=F_{5 n} /\left(5 F_{n}\right)$. Then the formal power series

$$
\begin{equation*}
\tau(t)=\sum_{n=1}^{\infty} T_{n} \frac{t^{n}}{n} \tag{1.8}
\end{equation*}
$$

is the logarithm of a one-dimensional formal group law over \mathbb{Z} which is strictly isomorphic over \mathbb{Z} to the formal multiplicative group law $\mathbb{G}_{m}(X, Y)=X+Y+X Y$.

2. PRELIMINARY RESULTS

The congruences (1.5) of Corollary 1(i) are typical of those obtained from the theory of formal group laws; in fact (1.5) implies (via [10], Theorem A.8) that the formal differential $\omega=P(t)^{-1} d t$ is the canonical invariant differential on a formal group law over the ring \mathbb{Z}_{p} of p adic integers when $(\Delta \mid p) \neq 0$ (cf. eqs. (3.6), (3.7) below). Hazewinkel's book [7] is an excellent reference on formal group laws; the aspects of the theory most relevant to the present article are also summarized nicely in ([2], pp. 143-45; [5], §2.3; [10], Appendix). Our proof of Theorem 1, however, uses only the elementary theory of finite and p-adic fields; for an exposition of these topics, the reader is referred to [8].

For p a prime number, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$, and $\mathbb{F}_{p^{d}}$ denote the ring of p-adic integers, the field of p-adic numbers, and the finite field of p^{d} elements, respectively. We define $K=\mathbb{Q}_{p}(\sqrt{\Delta})$ if p does not divide Δ and $K=\mathbb{Q}_{p}(\sqrt{\Delta}, \sqrt{p})$ if p divides Δ. We let \mathfrak{D}_{K} denote the ring of algebraic integers of K, \mathfrak{M}_{K} its unique maximal ideal, and $\bar{K}=\mathfrak{D}_{K} / \mathfrak{M}_{K}$ the residue-class field of K; for $x \in \mathfrak{D}_{K}$, \bar{x} denotes its image in \bar{K}. Let the positive integer d be defined so that $\bar{K} \cong \mathbb{F}_{p^{d}}$; then, if $x \in \mathfrak{D}_{K}$, the Teichmüller representative \hat{x} of x is the unique element of $\mathfrak{\Im}_{K}$ satisfying $\hat{x} \equiv x\left(\bmod \mathfrak{M}_{K}\right)$ and $\hat{x}^{p^{d}}=\hat{x}$. It is easily seen that \hat{x} is given by the p-adic limit $\hat{x}=\lim _{r \rightarrow \infty} x^{p^{d r}}$.

If p is an odd prime and D is an integer, then $\sqrt{D} \in \mathbb{Z}_{p}$ if $(D \mid p)=1$ and $\sqrt{D} \notin \mathbb{Z}_{p}$ if $(D \mid p)=-1$; here $(\cdot \mid p)$ denotes the Legendre symbol. For ease of notation, we extend the definition of $(\Delta \mid p)$ to the case $p=2$ by

$$
(\Delta \mid 2)= \begin{cases}1, & \text { if } \Delta \equiv 1(\bmod 8), \tag{2.1}\\ -1, & \text { if } \Delta \equiv 5(\bmod 8) \\ 0, & \text { if } \Delta \equiv 0(\bmod 4)\end{cases}
$$

This is analogous to the Legendre symbol in that $\sqrt{\Delta} \in \mathbb{Z}_{2}$ if $(\Delta \mid 2)=1$ and $\sqrt{\Delta} \notin \mathbb{Z}_{2}$ if $(\Delta \mid 2)=-1$.
If $\Delta \neq 0$ then $P(t)=(1-\alpha t)(1-\beta t)$, where α, β are distinct elements of \mathfrak{S}_{K}. It is well known, and easily computed from (1.2), that in this case we have the Binet form

$$
\begin{equation*}
\gamma_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{2.2}
\end{equation*}
$$

for γ_{n}. It follows that, for all primes p and all positive integers m, r such that $\gamma_{m p^{r-1}} \neq 0$, we have

$$
\begin{equation*}
\frac{\gamma_{m p^{r}}}{\gamma_{m p^{r-1}}}=\frac{\alpha^{m p^{r}}-\beta^{m p^{r}}}{\alpha^{m p^{r-1}}-\beta^{m p^{r-1}}}=\Phi_{p}\left(\alpha^{m p^{r-1}}, \beta^{m p^{r-1}}\right) \tag{2.3}
\end{equation*}
$$

where $\Phi_{p}(X, Y)=X^{p-1}+X^{p-2} Y+\cdots+X Y^{p-2}+Y^{p-1}$ is the (two-variable) $p^{\text {th }}$ cyclotomic polynomial.

Considering $P(t) \in \mathbb{R}[t]$, if $\Delta>0$ then $\alpha, \beta \in \mathbb{R}$, and if $\lambda \neq 0$ then $\alpha \neq-\beta$; therefore, $\gamma_{n} \neq 0$ for all n if $\Delta>0$ and $\lambda \neq 0$. However, when $\Delta<0$ one can have $\gamma_{n}=0$ in certain cases. We now show that this can only occur when $P(t)$ is equal to $1-t+t^{2}, 1-2 t+2 t^{2}, 1-3 t+3 t^{2}$, or one of these polynomials with t replaced by $k t$ for some integer k. We state Proposition 1 explicitly as follows.

Proposition 1: Suppose $P(t)=1-\lambda t-\mu t^{2}=(1-\alpha t)(1-\beta t)$ with $\lambda, \mu \in \mathbb{Z}$, and let $n \in \mathbb{Z}^{+}$. Then the following are equivalent:
(A) $\alpha^{n}=\beta^{n}$.
(B) One of the following holds:
(i) $\Delta=0$;
(ii) n is even and $\lambda=0$;
(iii) n is divisible by 3 , and $\lambda=k, \mu=-k^{2}$ for some $k \in \mathbb{Z}$;
(iv) n is divisible by 4 , and $\lambda=2 k, \mu=-2 k^{2}$ for some $k \in \mathbb{Z}$;
(v) n is divisible by 6 , and $\lambda=3 k, \mu=-3 k^{2}$ for some $k \in \mathbb{Z}$.

Proof: Suppose $\alpha^{n}=\beta^{n}$. If $n=1$, then $\alpha=\beta$, so $\Delta=(\alpha-\beta)^{2}=0$, as in (i). Now suppose $\alpha \neq \beta$; therefore, α, β, and Δ are all nonzero, so $\alpha^{n}=\beta^{n}$ implies $(\alpha / \beta)^{n}=1$.

Choose m to be the minimal positive integer such that $(\alpha / \beta)^{m}=1$; then $m>1$ and $\alpha / \beta=\zeta_{m}$ is a primitive $m^{\text {th }}$ root of unity. It follows that $\alpha^{n}=\beta^{n}$ if and only if n is a multiple of m. If $m=2$, then $\alpha^{2}=\beta^{2}$, so $\alpha=-\beta$, whence $\lambda=\alpha+\beta=0$, as in (ii).

We now suppose $m>2$; then ζ_{m} does not lie in \mathbb{Q}. The minimal polynomial of ζ_{m} over \mathbb{Q} is the $m^{\text {th }}$ cyclotomic polynomial $\Phi_{m}(X, 1)$, which is irreducible of degree $\phi(m)$. [Here $\phi(m)$ denotes Euler's totient.] But $\zeta_{m}=\alpha / \beta$ lies in the quadratic field $\mathbb{Q}(\sqrt{\Delta})$, so the minimal polynomial of ζ_{m} has degree 2 over \mathbb{Q}. Thus, $\phi(m)=2$, which occurs precisely when $m=3,4$, or 6 .

For $m=3$ we have $\Phi_{3}(X, 1)=X^{2}+X+1$ and $\zeta_{m}=\alpha / \beta=(-1 \pm \sqrt{-3}) / 2$, so $\arg (\alpha / \beta)=$ $\pm 2 \pi / 3$. Since α and β are complex conjugates, $\arg (\alpha / \beta)=2 \arg (\alpha)$, whence $\arg (\alpha)= \pm \pi / 3$ or $\pm 2 \pi / 3$. Therefore, $\alpha=k \cdot(1 \pm \sqrt{-3}) / 2$ for some real scalar k, whence $P(t)=1-k t+k^{2} t^{2}$. Since $P(t) \in \mathbb{Z}[t]$, we must have $k \in \mathbb{Z}$, precisely as in (iii). In this case, $\Delta=-3 k^{2}$.

For $m=4$, we have $\Phi_{4}(X, 1)=X^{2}+1$ and $\zeta_{m}=\alpha / \beta= \pm \sqrt{-1}$, so $\arg (\alpha / \beta)= \pm \pi / 2$. Thus, $\arg (\alpha)= \pm \pi / 4$ or $\pm 3 \pi / 4$, so $\alpha=k \cdot(1 \pm \sqrt{-1})$ for some real scalar k. Therefore, $P(t)=1-$ $2 k t+2 k^{2} t^{2}$, and since $P(t) \in \mathbb{Z}[t]$, we must have $k \in \mathbb{Z}$, precisely as in (iv). In this case, $\Delta=-4 k^{2}$.

For $m=6$, we have $\Phi_{6}(X, 1)=X^{2}-X+1$ and $\zeta_{m}=\alpha / \beta=(1 \pm \sqrt{-3}) / 2$, so $\arg (\alpha / \beta)=$ $\pm \pi / 3$. Thus, $\arg (\alpha)= \pm \pi / 6$ or $\pm 5 \pi / 6$, or $\alpha=k \cdot(3 \pm \sqrt{-3}) / 2$ for some real scalar k. Therefore, $P(t)=1-3 k t+3 k^{2} t^{2}$, and since $P(t) \in \mathbb{Z}[t]$, we must have $k \in \mathbb{Z}$, precisely as in (v). In this case, $\Delta=-3 k^{2}$.

We have shown that (A) implies (B). Using the above calculations, we find that (B) implies (A) by direct computation. This concludes the proof.

When $\gamma_{m} \neq 0$, it is also well known that $\varepsilon_{m}(n)=\lambda_{m n} / \lambda_{m}$ is an integer for all $n \in \mathbb{Z}^{+}$. In fact, it is easily seen from the Binet form (2.2) that $\varepsilon_{m}(n)$ satisfies the recursion (1.1) with λ and μ replaced by $\lambda_{m}=\alpha^{m}+\beta^{m}$ and $(-1)^{m-1} \mu^{m}=-\alpha^{m} \beta^{m}$, respectively, and the parameters $\lambda_{m}=$ $\lambda \gamma_{m}+2 \mu \gamma_{m-1}$ and $(-1)^{m-1} \mu^{m}$ clearly lie in \mathbb{Z}. Our method will be to use (2.3) to deduce integral congruences for the integers $\gamma_{m p^{r}} / \gamma_{m p^{r-1}}$ from the following p-adic congruences for powers of α and β.

Proposition 2: Suppose $P(t)=1-\lambda t-\mu t^{2}=(1-\alpha t)(1-\beta t)$ with $\lambda, \mu \in \mathbb{Z}$.
(i) If $(\Delta \mid p)=1$, then $\alpha^{m p^{r}} \equiv \alpha^{m p^{r-1}}\left(\bmod p^{r} \mathbb{Z}_{p}\right)$;
(ii) If $(\Delta \mid p)=-1$, then $\alpha^{m p^{r}} \equiv \beta^{m p^{r-1}}\left(\bmod p^{r} \Im_{K}\right)$;
(iii) If $p>2$ and $(\Delta \mid p)=0$, then $\alpha^{m p^{r}} \equiv \alpha^{m p^{r-1}} \equiv \beta^{m p^{r-1}} \equiv \beta^{m p^{r}}\left(\bmod p^{r-1 / 2} \mathfrak{O}_{K}\right)$;
(iv) If $(\Delta \mid 2)=0$, then $\alpha^{m 2^{r-1}} \equiv \beta^{m 2^{r-1}}\left(\bmod 2^{r} \Im_{K}\right)$ and $\alpha^{m 2^{r-1}} \equiv \alpha^{m 2^{r}}\left(\bmod 2^{r-1} \mathfrak{O}_{K}\right)$.

Proof: If $x, y, p^{s} \in \mathfrak{D}_{K}$ and $x \equiv y\left(\bmod p^{s} \mathfrak{O}_{K}\right)$ write $x=y+z$ with $z \in p^{s} \mathfrak{D}_{K}$; then

$$
\begin{equation*}
x^{p}=y^{p}+\left(\sum_{k=1}^{p-1}\binom{p}{k} y^{p-k} z^{k}\right)+z^{p} \tag{2.4}
\end{equation*}
$$

and hence $x^{p} \equiv y^{p}\left(\bmod p^{s+1} \mathfrak{Q}_{K}\right)$ if $s p \geq s+1$. Thus, we need only prove these results in the case $r=1$ and in addition that $a^{2 m} \equiv a^{4 m}\left(\bmod 2 \Im_{K}\right)$ when $(\Delta \mid 2)=0$; we may also assume $m=1$ with no loss of generality.

If $(\Delta \mid p)=1$, then $d=1, K=\mathbb{Q}_{p}, \supseteq_{K}=\mathbb{Z}_{p}, \mathfrak{M}_{K}=p \mathbb{Z}_{p}$, and $\bar{K} \cong \mathbb{F}_{p}$. The statement $\alpha^{p} \equiv \alpha$ $\left(\bmod p \mathbb{Z}_{p}\right)$ is Fermat's little theorem, which proves (i) in the case $r=1$.

If $(\Delta \mid p)=-1$, then $d=2$ and α, β are conjugates in the unramified extension K of \mathbb{Q}_{p} (their minimal polynomial over \mathbb{Q}_{p} is $\left.t^{2}+\lambda \mu^{-1} t-\mu^{-1}\right)$. We note that p does not divide μ, since if p divides μ then $\Delta \equiv \lambda^{2}(\bmod 4 p \mathbb{Z})$ and then $(\Delta \mid p)=1$. Therefore, α, β are units in \mathfrak{D}_{K} (since $\alpha \beta=-\mu$), and $\bar{\alpha}, \bar{\beta}$ are conjugates in \bar{K} over \mathbb{F}_{p} (their minimal polynomial being $t^{2}+\bar{\lambda} \bar{\mu}^{-1} t-$ $\bar{\mu}^{-1}$). Since $\bar{K} \cong \mathbb{F}_{p^{2}}$ and $x \mapsto x^{p}$ is the nontrivial automorphism of $\mathbb{F}_{p^{2}}$ over \mathbb{F}_{p}, we have $\bar{\alpha}^{p}=\bar{\beta}$ and $\bar{\beta}^{p}=\bar{\alpha}$; therefore, $\alpha^{p} \equiv \beta$ and $\beta^{p} \equiv \alpha$ modulo \mathfrak{M}_{K}. Since K is unramified, we have $\mathfrak{M}_{K}=$ $p \mathfrak{૭}_{K}$, yielding the $r=1$ case of (ii).

If $(\Delta \mid p)=0$, then q divides $\Delta=(\alpha-\beta)^{2}$, where $q=p$ if $p>2$ and $q=4$ if $p=2$. Therefore, $\alpha \equiv \beta\left(\bmod q^{1 / 2} \mathfrak{\Im}_{K}\right)$, giving the middle congruence of (iii) and the first part of (iv) in the case $r=1$. As in (i) and (ii) above, we have $\alpha^{p} \equiv \alpha$ or $\beta\left(\bmod \mathfrak{M}_{K}\right)$ according to whether $d=1$ or $d=2$, which completes (iii) for $r=1$, since $\mathcal{M}_{K}=p^{1 / 2} \mathfrak{D}_{K}$. Finally, if $(\Delta \mid 2)=0$, then 2 divides λ, and thus $\bar{\alpha}, \bar{\beta}$ are roots of $t^{2}-\bar{\mu}^{-1}$; this shows that $\bar{K} \cong \mathbb{F}_{2}$ and so $\alpha, \beta \equiv 0$ or $1(\bmod$ $2^{1 / 2} \mathfrak{O}_{K}$). Writing $\alpha=y+z$ with $z \in 2^{1 / 2} \mathfrak{D}_{K}$ and $y=0$ or 1 , we use (2.4) to check that $\alpha^{2} \in y+2 \mathfrak{N}_{K}$ and $\alpha^{4} \in y+4 \mathfrak{N}_{K}$, proving the $r=2$ case of the second statement of (iv).

Remarks: This proposition and its proof remain valid for λ, μ lying in \mathbb{Z}_{p} (not just in \mathbb{Z}) provided one replaces the Legendre symbol with the Hilbert symbol. Furthermore, this proposition implies that, for each $m \in \mathbb{Z}^{+}$and each prime p, the sequence $\left\{\alpha^{m p^{d r}}\right\}$ is a p-adically Cauchy sequence in \mathfrak{V}_{K}; the limit is the Teichmüller representative $\hat{\alpha}^{m}$.

3. DEMONSTRATION OF THEOREMS

Proof of Theorem 1: From Proposition 2(i), (ii), we have

$$
\alpha^{m p^{r}} \equiv\left\{\begin{array}{ll}
\alpha^{m p^{r-1}}, & \text { if }(\Delta \mid p)=1, \tag{3.1}\\
\beta^{m p^{r-1}}, & \text { if }(\Delta \mid p)=-1,
\end{array}\left(\bmod p^{r} \oiint_{K}\right)\right.
$$

and similarly for $\beta^{m p^{r}}$. Since $\Phi_{p} \in \mathbb{Z}[X, Y]$ and $\Phi_{p}(X, Y)=\Phi_{p}(Y, X)$, we have, in either case,

$$
\begin{equation*}
\frac{\gamma_{m p^{r}}}{\gamma_{m p^{r-1}}}=\Phi_{p}\left(\alpha^{m p^{r-1}}, \beta^{m p^{r-1}}\right) \equiv \Phi_{p}\left(\alpha^{m p^{r}}, \beta^{m p^{r}}\right) \equiv \cdots \equiv \Phi_{p}\left(\hat{\alpha}^{m}, \hat{\beta}^{m}\right)\left(\bmod p^{r} \oiint_{K}\right) \tag{3.2}
\end{equation*}
$$

provided $\gamma_{m p^{r-1}} \neq 0$. Evaluating $\lim _{r \rightarrow \infty} \alpha^{m p^{d r}}$ using (3.1), we find that

$$
\hat{\alpha}^{m p}= \begin{cases}\hat{\alpha}^{m}, & \text { if }(\Delta \mid p)=1, \tag{3.3}\\ \hat{\beta}^{m}, & \text { if }(\Delta \mid p)=-1 .\end{cases}
$$

If p does not divide $\gamma_{m} \Delta=(\alpha-\beta)\left(\alpha^{m}-\beta^{m}\right)$, then $\hat{\alpha}^{m} \neq \hat{\beta}^{m}$; therefore, $\gamma_{m p^{r-1}} \neq 0$ for all r. Thus, we have

$$
\begin{equation*}
\Phi_{p}\left(\hat{\alpha}^{m}, \hat{\beta}^{m}\right)=\frac{\hat{\alpha}^{m p}-\hat{\beta}^{m p}}{\hat{\alpha}^{m}-\hat{\beta}^{m}}=(\Delta \mid p) . \tag{3.4}
\end{equation*}
$$

Together with (3.2) this shows that $\gamma_{m p^{r}} / \gamma_{m p^{r-1}} \equiv(\Delta \mid p)\left(\bmod p^{r} \mathfrak{O}_{K}\right)$; since both sides of this congruence are integers, the congruence must hold modulo $p^{r} \mathbb{Z}$, completing the proof of (i).

As in (3.2), one can see from Proposition 2 that, provided $\gamma_{m p^{r-1}}$ is always nonzero, one has $\Phi_{p}\left(\hat{\alpha}^{m}, \hat{\beta}^{m}\right)$ as the p-adic limit of $\gamma_{m p^{r}} / \gamma_{m p^{r-1}}$, and thus determine the value L as stated in part (ii) of the theorem. One may discover the stronger congruences of (iii) [which will be useful in the proofs of Corollary 1(ii) and Theorem 3], however, by making a simple algebraic manipulation.

Suppose that p divides $\gamma_{m} \Delta$; then write $x_{r}=\alpha^{m p^{r-1}}, y_{r}=\beta^{m p^{r-1}}, z_{r}=x_{r}-y_{r}$, and

$$
\begin{equation*}
\frac{\gamma_{m p^{r}}}{\gamma_{m p^{r-1}}}=\frac{x_{r}^{p}-y_{r}^{p}}{x_{r}-y_{r}}=\frac{\left(y_{r}+z_{r}\right)^{p}-y_{r}^{p}}{z_{r}}=p y_{r}^{p-1}+\left(\sum_{k=2}^{p-1}(p) p_{r}^{p-k} \frac{z_{r}^{k-1}}{k}\right)+z_{r}^{p-1} . \tag{3.5}
\end{equation*}
$$

If p divides $\gamma_{m}=\left(\alpha^{m}-\beta^{m}\right) /(\alpha-\beta)$ but not $\Delta=(\alpha-\beta)^{2}$, then $\alpha^{m} \equiv \beta^{m}\left(\bmod p \bigcirc_{K}\right)$; therefore, $\hat{\alpha}^{m}=\hat{\beta}^{m}$. Since $\left\{\bar{\alpha}^{p}, \bar{\beta}^{p}\right\}=\{\bar{\alpha}, \bar{\beta}\}$ and $\bar{\alpha}^{m}=\bar{\beta}^{m}$, we have $\bar{\alpha}^{m}=\bar{\beta}^{m} \in \mathbb{F}_{p}$; thus, $\hat{\alpha}^{m}=\hat{\beta}^{m} \in \mathbb{Z}_{p}$. Note that $\hat{\alpha}, \hat{\beta} \neq 0$ since p does not divide Δ; hence, p does not divide $\mu=-\alpha \beta$, and by Fermat's little theorem, $\hat{\beta}^{m(p-1)}=1$. From Proposition 2(i), (ii), we have $\alpha^{m p^{r-1}} \equiv \hat{\alpha}^{m}=\hat{\beta}^{m} \equiv \beta^{m p^{r-1}}$ $\left(\bmod p^{r} \Im_{K}\right)$. Therefore, the term $p y_{r}^{p-1}$ in (3.5) is congruent to p modulo $p^{r+1} \mathfrak{D}_{K}$. The final term z_{r}^{p-1} is zero modulo $p^{r(p-1)} \mathfrak{O}_{K}$, which shows that $\gamma_{m p^{r}} / \gamma_{m p^{r-1}} \equiv p\left(\bmod p^{r} \Im_{K}\right)$; since both sides are integers, the congruence holds modulo $p^{r} \mathbb{Z}$, as asserted in (ii). In fact, since $r(p-1) \geq r+1$ for $p>2$ and $r>0$, we see that the congruence (1.3) holds modulo $p^{r-1} \mathbb{Z}$ when $p>2$ and p divides γ_{m} but not Δ.

The case $(\Delta \mid p)=0, \Delta \neq 0$ is similar; using Proposition 2(iii) we find that for $p>2$ the term $p y_{r}^{p-1}$ in (3.5) is congruent to $p \hat{\beta}^{m(p-1)}$ modulo $p^{r+1 / 2} \Im_{K}$, all terms within the summation in (3.5) are zero modulo $p^{r+1 / 2} \mathfrak{D}_{K}$, and the final term z_{r}^{p-1} is zero modulo $p^{(r-1 / 2)(p-1)} \mathfrak{D}_{K}$. Thus, for $p>2$, we have $\gamma_{m p^{r}} / \gamma_{m p^{r-1}} \equiv L\left(\bmod p^{r} \mathfrak{O}_{K}\right)$ and, therefore, modulo $p^{r} \mathbb{Z}$. In addition, since $(r-1 / 2)(p-1) \geq r+1 / 2$ for $p>3$ or for $p=3$ and $r>1$, in these cases the congruence (1.4) holds modulo $p^{r+1} \mathbb{Z}$, since it holds modulo $p^{r+1 / 2} \mathfrak{O}_{K}$ while both sides lie in \mathbb{Z}. If $(\Delta \mid 2)=0$, we find from Proposition 2 (iv) that $2 \alpha^{m 2^{r-1}} \equiv L\left(\bmod 2^{r} \mathfrak{S}_{K}\right)$ and $z_{r} \equiv 0\left(\bmod 2^{r} \mathfrak{O}_{K}\right)$, giving the result in that case.

Finally, if $\Delta=0$, then $P(t)=(1-\alpha t)^{2}$ for some $\alpha \in \mathbb{Z}$, and a quick computation from (1.2) yields $\gamma_{n}=n \alpha^{n-1}$. If $\lambda \neq 0$, then $\alpha \neq 0$; therefore, we have $\gamma_{m p^{r}} / \gamma_{m p^{r-1}}=p \alpha^{m p^{r-1}(p-1)} \in \mathbb{Z}$. As in Proposition 2(i), if p does not divide α this lies in $p+p^{r+1} \mathbb{Z}$, whereas if $\alpha \in p \mathbb{Z}$, it is clearly congruent to zero modulo $p^{r+1} \mathbb{Z}$.

Proof of Corollary 1: We first treat the case where $\Delta>0$ and $\lambda \neq 0$ so that $\gamma_{n} \neq 0$ for all n. If p does not divide $\gamma_{m} \Delta$, part (i) follows directly from (1.4) upon multiplication by $\gamma_{m p^{r-1}}$. From Theorem 1(ii), we find by induction on r that $\gamma_{m p^{r}} \equiv 0\left(\bmod p^{r+1} \mathbb{Z}\right)$ if p divides γ_{m}, and $\gamma_{m p^{r}} \equiv 0$ $\left(\bmod p^{r} \mathbb{Z}\right)$ if p divides Δ. It then follows that both sides of (1.5) are zero modulo $p^{r} \mathbb{Z}$ if p divides $\gamma_{m} \Delta$.

For (ii), we recall from Theorem 1(iii) that the congruence (1.4) holds modulo $p^{r+1} \mathbb{Z}$ when $p>3$ and p divides Δ. In this case or in the case where p divides γ_{m}, we obtain (ii) upon multiplication of (1.4) by $\gamma_{m p^{r-1}}$.

To extend these results to arbitrary Δ and λ, we observe that if $\lambda^{\prime}=\lambda+p^{N}$ and γ_{n}^{\prime} is defined by $\gamma_{0}^{\prime}=0, \gamma_{1}^{\prime}=1$, and $\gamma_{n+1}^{\prime}=\lambda^{\prime} \gamma_{n}^{\prime}+\mu \gamma_{n-1}^{\prime}$, then $\gamma_{n}^{\prime} \equiv \gamma_{n}\left(\bmod p^{N} \mathbb{Z}\right)$ for all n. It is clear that we may choose N large enough so that $N \geq 2 r, \Delta^{\prime}=\left(\lambda^{\prime}\right)^{2}+4 \mu>0$, and $\lambda^{\prime} \neq 0$. Since $\Delta^{\prime} \equiv$ $\Delta(\bmod p \mathbb{Z})$, the results for any Δ, λ follow from the results for $\Delta^{\prime}, \lambda^{\prime}$.

Remarks: One can easily determine from [4] with the aid of $\S 5.8$ in [7] that $\omega=P(t)^{-1} d t$ is the canonical invariant differential on the formal group law $F(X, Y)$ over \mathbb{Z} given by the rational function

$$
\begin{equation*}
F(X, Y)=(X+Y-\lambda X Y) /(1+\mu X Y) \tag{3.6}
\end{equation*}
$$

(equivalently, $\sum_{n=1}^{\infty} \gamma_{n} T^{n} / n$ is the logarithm of this formal group law). From this, it follows ([2]; [10], Theorem A.8) that there exist congruences of the type

$$
\begin{equation*}
\gamma_{m p^{r}} \equiv H \gamma_{m p^{r-1}}\left(\bmod p^{r} \mathbb{Z}_{p}\right) \tag{3.7}
\end{equation*}
$$

for some $H \in \mathbb{Z}_{p}$, when p does not divide γ_{p} [which is equivalent, via Corollary $1(\mathrm{i})$, to the condition $(\Delta \mid p) \neq 0]$. What is surprising about Corollary 1 is that the congruences obtained also hold, and are in fact stronger, in the cases not predicted by the theory of formal group laws [i.e., when $(\Delta \mid p)=0$]. Other congruences of the type

$$
\begin{equation*}
c_{m p^{r}} \equiv H c_{m p^{r-1}}\left(\bmod p^{a r} \mathbb{Z}_{p}\right) \tag{3.8}
\end{equation*}
$$

with $a \geq 2$ (called "supercongruences") have also been observed involving binomial coefficients [6] and the Apéry numbers [2], and have been conjectured in [11].

Proof of Theorem 2: The statement that the formal power series (1.7) is the logarithm of a formal group law over \mathbb{Z} which is strictly isomorphic over \mathbb{Z} to \mathbb{G}_{m} is equivalent to requiring that $\lambda_{n} \in \mathbb{Z}, \lambda_{1}=1$, and for all primes p and all $m, r \in \mathbb{Z}^{+}$the congruences

$$
\begin{equation*}
\lambda_{m p^{r}} \equiv \lambda_{m p^{r-1}}\left(\bmod p^{r} \mathbb{Z}\right) \tag{3.9}
\end{equation*}
$$

(cf. [2], pp. 143-45; [10], Theorem A.9). Assuming $\lambda=1$ and $\mu \neq-1$, Proposition 1 tells us that γ_{n} is never zero, so $\lambda_{n} \in \mathbb{Z}$ for $n>0$ and, from (2.3), we have $\lambda_{n}=\alpha^{n}+\beta^{n}$. We have $\lambda=\lambda_{1}=1$ and $\Delta=\lambda^{2}+4 \mu$ is odd, so it follows from Proposition 2(i), (ii), (iii), that the congruences (3.9) hold modulo $p^{r-1 / 2} \Im_{K}$, but both sides are integers, so the theorem follows.

Proof of Theorem 3: From [3] we know that $T_{n} \in \mathbb{Z}$ for all n, and it is clear that $T_{1}=1$. Therefore, as in Theorem 2, we must show that for all primes p and all $m, r \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
T_{m p^{r}} \equiv T_{m p^{r-1}}\left(\bmod p^{r} \mathbb{Z}\right) \tag{3.10}
\end{equation*}
$$

From the definition of T_{n}, one has

$$
\begin{equation*}
T_{n}=\frac{1}{5} \Phi_{5}\left(\alpha^{n}, \beta^{n}\right) \tag{3.11}
\end{equation*}
$$

where α, β are the reciprocal roots of the polynomial $P(t)=1-t-t^{2}$ associated to $\lambda=\mu=1$. Since $\Delta=5$, for all primes $p \neq 5$ these congruences follow directly from Proposition 2(i), (ii), as in (3.2). To complete the proof, we take advantage of the fact that

$$
\begin{equation*}
\frac{F_{m s^{r}}}{F_{m 5^{r-1}}} \equiv 5\left(\bmod 5^{r+1} \mathbb{Z}\right), \tag{3.12}
\end{equation*}
$$

which is a consequence of Theorem 1 (iii). Dividing by 5 , we obtain

$$
\begin{equation*}
T_{m 5^{r-1}}=\frac{F_{m s^{r}}}{5 F_{m s^{r-1}}} \equiv 1\left(\bmod 5^{r} \mathbb{Z}\right), \tag{3.13}
\end{equation*}
$$

which proves the congruence (3.10) in the case $p=5$, completing the proof.
Remark: The result (3.13) is not best possible; in fact, the congruence $T_{5^{r}} \equiv 1\left(\bmod 5^{2 r} \mathbb{Z}\right)$ has been shown in ([3], Lemma 2).

4. CONCLUDING REMARKS

In [3] it is noted that for $k \in \mathbb{Z}^{+}$the sequences $\{T(k, n)\}_{n>0}$ given by $T(k, n)=F_{k n} /\left(F_{k} F_{n}\right)$ are always integral in the three special cases $k=1[T(1, n)=1$ for all $n], k=2\left[T(2, n)=L_{n}\right.$, the $n^{\text {th }}$ Lucas number $]$, and $k=5\left[T(5, n)=T_{n}\right]$. Our Theorem 2 and Theorem 3 explain that all three of these sequences occur as the expansion coefficients for the logarithms of formal group laws over \mathbb{Z} which are strictly isomorphic over \mathbb{Z} to the same formal group law \mathbb{G}_{m}.

For $p \neq 2$ one may also approach these p-adic properties of the sequence $\left\{\gamma_{n}\right\}$ via its combinatorial form

$$
\begin{equation*}
\gamma_{n+1}=\sum_{k=0}^{[n / 2]}\binom{n-k}{k} \lambda^{n-2 k} \mu^{k} \tag{4.1}
\end{equation*}
$$

[9], which may be expressed in terms of hypergeometric functions as

$$
\gamma_{n+1}=\lambda^{n}{ }_{2} F_{1}\left(\begin{array}{c}
-n / 2,(1-n) / 2 \tag{4.2}\\
-n
\end{array}-4 \mu / \lambda^{2}\right)
$$

We sketch the method here: Taking $n+1=m p^{r}$ and letting $r \rightarrow \infty$, the parameters $-n / 2$, $(1-n) / 2$, and $-n$ converge p-adically to $1 / 2,1$, and 1 , respectively. Using a suitable modification of the argument in ([13], Theorem 4.1) one can show that when p does not divide γ_{p}, the p-adic limit of $\gamma_{p^{r}} / \gamma_{p^{r-1}}$ is given by

$$
\lim _{r \rightarrow \infty} \frac{\gamma_{p^{r}}}{\gamma_{p^{r-1}}}={ }_{2} \mathscr{F}_{1}\left(\begin{array}{c}
\frac{1}{2}, 1 \tag{4.3}\\
1
\end{array} ;\left(-\widehat{4 \mu} / \lambda^{2}\right)\right),
$$

where (as in the notation of [13]) the symbol ${ }_{2} \widetilde{\mathscr{F}}_{1}(x)$ denotes the p-adic "analytic continuation" of ${ }_{2} F_{1}(x) /{ }_{2} F_{1}\left(x^{p}\right)$. Since ${ }_{2} F_{1}(1 / 2,1 ; 1 ; x)={ }_{1} F_{0}(1 / 2 ; ; x)=(1-x)^{-1 / 2}$, the same value for the p-adic limit in (4.3) is also obtained from $\lim _{r \rightarrow \infty}\left(c_{p^{r}} / c_{p^{r-1}}\right)$, where

But clearly $\lim _{r \rightarrow \infty}\left(c_{p^{r}} / c_{p^{r-1}}\right)=\lim _{r \rightarrow \infty} \Delta^{p^{r-1}(p-1) / 2}=\hat{\Delta}^{(p-1) / 2}$, which is seen to be precisely $(\Delta \mid p)$ from Euler's criterion

$$
\begin{equation*}
(\Delta \mid p) \equiv \Delta^{(p-1) / 2}(\bmod p \mathbb{Z}) \tag{4.5}
\end{equation*}
$$

and the fact that $(\widehat{ \pm 1})= \pm 1$. The point is that the sequences $\left\{\gamma_{n+1}\right\}$ and $\left\{\Delta^{n / 2}\right\}$ should have the same p-adic congruence behavior because they arise from hypergeometric functions that are p adically proximate (when $n+1=m p^{r}$) So, if one is willing to appeal to the p-adic analytic properties of the combinatorial form (4.1), one may obtain a fair explanation for the occurrence of $(\Delta \mid p)$ in Theorem 1(i) when $(\Delta \mid p) \neq 0$. But again, Theorem 1 (ii) shows that the p-adic limit in (4.3) even exists when $(\Delta \mid p)=0$ [which is equivalent to p dividing γ_{p}, by Corollary 1(i)], a fact that is not predicted by the theory of p-adic hypergeometric functions (cf. [13], Theorem 2.3).

ACKNOWLEDGMENTS

The author thanks James E. Carter for an inspiring discussion, and the referee for useful comments and suggestions.

REFERENCES

1. R. André-Jeannin. "A Note on the Irrationality of Certain Lucas Infinite Series." The Fibonacci Quarterly 29.2 (1991):132-36.
2. F. Beukers. "Some Congruences for the Apéry Numbers." J. Number Theory 21 (1985): 141-55.
3. M. Bucci, A. Di Porto, \& P. Filipponi. "A Note on the Sequence $\left\{F_{5 n} /\left(5 F_{n}\right)\right\}$." Preprint.
4. R. Coleman \& F. McGuinness. "Rational Formal Group Laws." Pacific J. Math. 147 (1991):25-27.
5. M. Coster. Supercongruences. Leiden, 1988.
6. M. Coster. "Generalization of a Congruence of Gauss." J. Number Theory 29 (1988):300310.
7. M. Hazewinkel. Formal Groups and Applications. New York: Academic Press, 1978.
8. N. Koblitz. p-Adic Numbers, p-Adic Analysis, and Zeta-Functions. New York: SpringerVerlag, 1977.
9. P. McCarthy \& R. Sivaramakrishnan. "Generalized Fibonacci Sequences via Arithmetical Functions." The Fibonacci Quarterly 28.4 (1900):363-70.
10. J. Stienstra \& F. Beukers. "On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic K3-Surfaces." Math. Annalen 271 (1985):269-304.
11. L. van Hamme. "Proof of a Conjecture of Beukers on Apéry Numbers." Proceedings of the Conference on p-Adic Analysis, Hengelhoef (1986):189-95.
12. H. Wilf. Generatingfunctionology. Boston-San Diego-New York: Academic Press, 1990.
13. P. T. Young. "Apéry Numbers, Jacobi Sums, and Special Values of Generalized p-Adic Hypergeometric Functions." J. Number Theory 41 (1992):231-55.
AMS Classification Numbers: 11B39, 11A15
