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It is well known that the congruence 

4 = 1 (modw) (1) 

is satisfied by all prime n. However, there are also many composite n satisfying (1), the smallest 
example being n- 705 = 3-5-47 (indeed, there are infinitely many such n). The term "Lucas 
pseudoprime" (or LPP) appears to be appropriate to describe such composite n. It must be 
mentioned, however, that there is little uniformity in the literature regarding this subject. An 
alternative term which is frequently used is "Fibonacci pseudoprime"; however, since this term has 
occasionally been used to describe those composite n which satisfy the following congruence: 

Fn-{5in) = 0 (modw), where gcd(?2,10) = 1 (2) 
and (5In) is a Jacobi symbol, ^ * 

it was felt advisable to avoid the latter term in this article. Accordingly, we adopt the term "Lucas 
pseudoprimes" (or LPP's) to describe those composite n satisfying (1). Incidentally, if U and V 
represent the sets of composite integers satisfying (2) and (1), respectively, it is known that U, V, 
and UnV are infinite sets. 

Di Porto & Filipponi [3] indicated the values of all LPP's < 106 (a total of 86 values). Also, 
in private correspondence [4], Filipponi provided the author with a table of 852 LPP's, which are 
all the LPP's < 108. On the basis of the values obtained, Di Porto & Filipponi proposed several 
conjectures. We are concerned here only with proving one of these conjectures, namely, that all 
LPP's are odd. 

As it turns out, Di Porto (one of the proposers of this conjecture) has recently proven her 
own conjecture independently (see [5]); moreover, it came to the author's attention that a much 
earlier proof of this result had been given by White, Hunt, & Dresel [7] no later than 1977. The 
author was made aware of these revelations only after this paper was originally submitted for 
publication. The author publicly acknowledges the priority of these earlier efforts, and also gives 
Di Porto credit for her independently derived proof, which predates this paper. Developments 
such as these give an indication of the rapid rate of growth of knowledge in this fascinating field. 

In spite of the earlier proofs, it does not seem amiss to present another proof of the statement 
that all LPP's are odd; this is particularly true since the proof given here differs from the earlier 
proofs in several particulars. 

Our proof depends, in part, on some results obtained in [3], namely, that the existence of any 
even LPP, which we denote by n, implies that n = ±2 (mod 12), and that n^lp, where/? is 
prime. We also require a result which we state as a lemma, without proof; the reader is referred 
to [1] for a proof. 

Lemma 1: 
L5r=L^ (mod5r), r = l,2,.... (3) 
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In addition, we will need some basic results concerning the Fibonacci rank of appearance, or 
entry-point. We recall that, for a given n > 1, the rank of appearance (or entry-point) ofn, which 
we denote as Z(n), is defined to be the smallest positive integer t such that n\Ft. Various other 
terms and/or notation have been used by other authors, again pointing to a dearth of uniformity in 
the literature. One frequently used term, namely, "rank of apparition," is particularly odious to 
this writer, and shall be avoided steadfastly. As has been pointed out by Ribenboim [6], the latter 
term stems from a bad translation of the French hi d'apparition, which means "law of 
appearance," not "law of apparition"; in all English dictionaries, "apparition" means "ghost." 

The following properties are well known and stated without further comment: 

(i) Z(n) exists for all n > 1; 

(ii) Z(m)\n iff m\Fn\ 

(iii) Z(m)\Z(n) iff m\n iff Fm\Fn\ 
(4) 

m r T 

(iv) If n = llpp, then Z(n) = lcm Z(rf ), Z(p?),..., Z Q # )]; 
/ = 1 

(v) Z(pe) = pfZ(pl where 0<f<e. 

Finally, we require another result, also stated without proof as a lemma; refer to [2] for a 
proof. 

Lemma 2: 
n = Z(n) iffn = 5* orrc = 12-5M, u>0. (5) 

With these tools, the proof of the oddness of LPP's is surprisingly elementary. Now for our 
proof! 

Suppose, to the contrary that 2n is a LPP. Thus, we assume that 

Z ^ S E I (mod2w), (6) 

where n is composite and gcd(w, 6) = 1, using Di Porto & Filipponi's results in [3]. The following 
simple identities are readily verifiable: L2n -1 = F3n I Fn and L2

n = 5FW
2 - 4 = L^ - 2. Along with 

(6), these imply the congruences: 
(i) L2

n^-l (mod In)-

(ii) 5F„2-3(mod2,0; (7) 

(iii) F3„ = 0 {modln). 

From (7)(i) and (ii), we see that L„ # 0, Fn 4 0 (mod2w). Thus, Fm 4 0 (mod In) for all m 
dividing n, since Fm\Fn. From (7)(iii), it follows that 

Z(2n) = 3w. (8) 

Now n, and thus Z(2n), are odd. Also, Z(2n) = lcm[Z(2), Z(^)], or 

Z(2rc) = 3n = lcm[3, Z(w)]. (9) 
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Since gcd(35 ri) = 1, we see from (9) that 3e\\ Z(n) => e = 0 or 1. We consider these two pos-
sibilities as separate cases. 

Cascl gcd(3, Z(w)) = 1 

By (9), Z(2ri) = 3Z(n) = 3n, so n = Z(ri). Using Lemma 2 and the fact that gcd(6, ri) = 1 and 
n is composite, we see that n = 5u,u>2. Let n = 5m, where m - 5M_1. Now (7)(i) implies that 
L2

n=-l (mod ri), and Ln = Lm (mod w), by Lemma 1; hence, L2
m = -l (mod ri) => L2m = 1 (mod w) 

=> L2m = 1 (mod m). Also, since gcd(3,2wi) = 1, L2m is odd (another well-known fact). There-
fore, L2m = 1 (mod 2m). This is equivalent to the statement that 2m is a LPP, provided m is 
composite. By an easy inductive process, we see that In, 2n/5, 2n/52, ...,2-52 =2n/5u~2 are 
all LPP's. However, as we may readily verify from a table of Lucas numbers, L5Q = 23 # 1 (mod 
50), so 50 is /io^ a LPP. The contradiction eliminates this possibility. 

CaselL 3l\\Z(n) 

By (9), Z{2n) = Z(n) = 3/i. Also, Z(12w)= lcm[Z(12),Z(w)]= lcm[12,3n] = 12w. Again 
using Lemma 2 and the fact that gcd(6, ri) = 1, we reach a contradiction, as in Case I. 

We conclude that our original assumption is faulty and, therefore, that all LPP's are odd. 
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