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1. INTRODUCTION 

The Fibonacci and Lucas coefficients are defined as 

FnFn-\'"Fl 

9 (FkFk-l ''' Fl)(F„-kFn-k-l ••'Fl) 
and LnLn_i "Li 

(At Afc-1 ''' AXAi - / r Ai-Jfc-1 A) 
These coefficients have been studied by several authors, [2], [8], [14], and [18]. Using these 
definitions, what we call the Fibonacci and Lucas triangles are formed in the same way as Pascal's 
Triangle is formed from ordinary binomial coefficients, that is, the /2th row is [»] for 0<k<n. 
Other authors, e.g., [3], [10], have also constructed such triangles in various ways. The ordinary 
binomial coefficients modulo 2 and Pascal's Triangle modulo 2 have been studied extensively in 
[4], [5], [6], [7], [11], [17], [20], [22], [23], and [25]. Among problems of interest have been the 
determination of the parity of binomial coefficients, the number of odd coefficients in the nth row 
of Pascal's Triangle, and the iterative structure of Pascal's Triangle modulo 2. We will extend 
these results to both the Fibonacci and Lucas coefficients modulo 2 in sections 2 and 3. In section 
4 we also determine the relationship between the Fibonacci and Lucas coefficients. 

Portions of these triangles, both the originals and their modulo 2 reductions, are shown 
below. Since the Lucas coefficients are not always integers, the symbol a will be used to denote 
those coefficients, M , that have a higher power of 2 in the denominator than in the numerator. 

1 
11 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
16 15 2 0 1 5 6 1 

17 2135352171 
1 8 28 56 70 56 28 8 1 
Pascal's Triangle 

l 
11 
10 1 
l i n 
1000 1 
110011 
1010101 
11111111 
10000000 1 Pascal's Triangle Modulo 2 

1 
1 1 

1 1 1 
1 2 2 1 

1 3 6 3 1 
1 5 15 15 5 1 

1 8 40 60 40 8 1 
1 13 104 260 260 104 13 1 

1 21 273 1092 1820 1092 273 21 1 

1 
1 1 

1 1 1 
1 0 0 1 

1 1 0 1 1 
1 1 1 1 1 1 

1 0 0 0 0 0 1 
1 1 0 0 0 0 1 1 

1 1 1 0 0 0 1 1 1 
Fibonacci Triangle Fibonacci Triangle Modulo 2 
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i ' . 
1 3 1 1 1 1 

1 4 4 1 1 0 0 1 
1 7 - ^ 7 1 1 1 0 1 1 

1 11 77 77 n x 1 1 1 1 1 1 
1 is 66 3 *fl 3 66 18 1 1 0 0 a 0 0 1 

1 29 174 f f 174 29 1 1 1 0 a a 0 1 1 
1 4 7 1363 4089 44979 4089 1363 An \ l l l a a a l l l 

3 2 14 2 3 *' X 

Lucas Triangle Lucas Triangle Modulo 2 

We will need the following information about regularly divisible sequences, generalized 
bases, and a generalized form of Kummer's Theorem. 

Divisibility questions about sequences, such as which terms are divisible by a given prime, 
have been investigated by several authors, e.g., [9], [13], [15]. A sequence {un} is said to be 
strongly divisible provided 

gcd(wm, un) = %d(m, n) for all m, n > 1. 

The term regularly divisible by all primes is defined in [16] and is shown to be equivalent to that 
of strongly divisible. We use the following definition which defines the divisibility of the sequence 
for a set of primes rather than for all primes. 

Definition: Let {A^}^ be a sequence of positive integers. We say that {An}™=l is regularly divi-
sible with respect to a set of primes if= {Pi,p2, •••}, provided that, for each p G ? 3 P'iAj if and 
only if r(p')\j, for all / > 1 andj > 1, where r{pl) is the rank of apparition of p\ that is, A , is 
the first term in the sequence divisible by p1. 

A sequence is said to be regularly divisible if it is regularly divisible by all primes. Since the 
Fibonacci sequence satisfies the requirements for strong divisibility [9], it is a regularly divisible 
sequence. 

We will use r - r(2) = 3 for the rank of apparition of 2. That is, Fr is the first term in the 
sequence that is divisible by 2. For the rank of apparition of 2', we will use r (27 )-rr. 

We will use a generalized base for the positive integers. Since the Fibonacci sequence is 
regularly divisible by 2, we have that •—- is always an integer. Thus, a generalized base 2? = {1, r, 
r2, ..., rn ...} can be used [21] and the number n can be uniquely expressed as 

n = (ntnt_l-''n1n0)gj>=ntrt+nt_lrt_1 + '''+nlr+n0, where 0</i, <-Lt^-. 

The version of Kummer's Theorem we need is that in [27]: 

Rummer's Theorem for Generalized Binomial Coefficients: Let $i - {sij}J=1 be a sequence of 
positive integers. If si is regularly divisible hyp, then the highest power ofp that divides [mH is 
the number of carries that occur when the integers n and m are added in base 2P, where 
3P = {rj }J=0 with r0 = 1 and rt = rip1), for all / > 1. 
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2. THE FIBONACCI TRIANGLE MODULO 2 

One of the interesting results for Pascal's Triangle modulo 2 is that the number of coefficients 
in the nth row which are congruent to 1 modulo 2, denoted N[n, 2,1], is equal to 2f, where t is 
the number of ones in ris base two representation [24]. A similar result follows for the Fibonacci 
triangle 

Theorem 1: For the Fibonacci triangle modulo 2, the number of coefficients in the n^ row 
congruent to 1 modulo 2 is given by N[n, 2,1] = 2l3\ where t = number of l's and s = number of 
2's in /i's base 2P representation. 

Proof: The generalized base for the Fibonacci sequence is 2? = {1, 3, 6, 6,12,...}. Since 

for « = (... «2«i«o)^ a n^ £ = (••• kiKK)®* w e have that 0 < «y;, &7 < 2 for z > 1 and 0 < nQ, k0 < 3. 
From Webb & Wells [27], JV[«, 2,1] = n/2>o(wi + !)• F o r n o borrow to occur in the base 2? sub-
traction of & from n, there are two choices for kt for each nt - 1, and one choice for each nt - 0. 
If nQ = 2, there are three choices for kQ. Therefore, N[n, 2,1] = 2r35 where t = number of l's and 
s = number of 2's in «'s base 9̂  representation. 

The following theorem, which is similar to Lucas's theorem for binomial coefficients, 
provides a way to investigate the iterative behavior of the Fibonacci triangle modulo 2. 

Theorem 2: The Fibonacci coefficients satisfy 

(mod 2) 

where 

= 0 for fy > n0 and [V7 ] = 0 for ki > nt. 

Proof: If a borrow occurs in the base 2P subtraction of k from n, then ni < ki for some z. 
Thus, either T̂ l = 0 for ^0 > n0 or fgl = 0 for some z > 1 and the result holds trivially. 

If no borrow occurs, 0<kf< nt < 2 for z > 1, so that 

For z = 0, 0 < kQ < nQ < 3, and 

Thus, 

^ l ( m o d 2 ) . 

= 1 (mod 2). 

•m i>\ 

(mod 2). 
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Corollary 2.1: For n = 3h+n0 and m = 3k + kQ, 

Proof: Let 

and 

Since 

m« 
(mod 2). 

n = ntrt +nt_lrt_l H \-nlr+n0 = 3h + n0 

m-ntrt +mf_1rr_1 H hwtr+m0 = 3k + mQ. 

the coefficients in the ordinary base 2 expansion of h and & will be from the sets 

{w,,*!,-!,...,^} and {mnmt_l9...,ml}. 

When /; = /;+1 for some /, such as r2 - r3 = 6, the base 2P requires «y, mi = 0. The base 2 coeffi-
cients of A and A: will be nt andmy where rt ^rj+l. Although the exact power of 2 associated with 
each coefficient can be determined only by looking at the relationship between all the elements in 
the base, h and k will still have an appropriate base 2 expansion. The residue of (*) modulo 2 will 
be 

*)-n&>«>-
The above corollary can be used to investigate the iterative behavior of the Fibonacci triangle 

modulo 2. To begin, we will use the notation of Long [20]. 

Theorem 3: Let A„ k denote the following triangle, 

3n 
3k 

3« + l 
3* 

3n + l 
3Jfc + l 

3« + 2 
3* 

3« + 2 
3k +1 

J® 

3n + 2 
3k + 2 

a. 

b. 

The entries in A„ k will be either all congruent to 1 or all congruent to 0 modulo 2. The 
entries in the Fibonacci triangle not included in one of the triangles Anjc are congruent to 0. 

The triangles satisfy an element-wise addition modulo 2, A _̂1>A_j +A„_l>k = Ank (mod 2). 

The Fibonacci triangle of Ank's is in 1-1 correspondence with Pascal's Triangle modulo 2. 
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Proof: Since [<] = 1 (mod 2) for 0 < s < t < 3, we have 

3/i 
3* 

3/1 + 1 
3£ 

3/1 + 1 
3£ + l 

3/2 + 2 
3* 

3« + 2 
3A + 1 

3/1 + 2 
3k + 2 

n\ 

*J 

("1 
UJ "2" 

0 ^ 

r ̂  

U; 
"i" 
0 9 

M 
I k) 

"0" 
0 ^ 
(/A 
W "2" 

1 Sf 

T 
l & 
M 
{ *) 

'2' 
2 

(mod 2). 

Therefore, 

3/i 
3A: 

5 

3/1 + 1 
3* 

3z? + 2 
3* 

3/1 + 2 
3£ + l 

3/1 + 1 
3/V + l 

3/1 + 2 
3A + 2 

* = » / ( ! ) - • 

r 0 = o°o i f l ^ J ^ o 
ooo {kj 

(mod 2). 

The entries not included in one of these triangles are of the form [^+'1 with 0 < t < s < 2, and 
so are congruent to 0 modulo 2. . 

From Corollary 2.1, we have that 

3(n~l) + t' 
3(k-l) + s + 

9? L 

3(n-l) + t 
3k + s 

n-\ 
J t -1 + 

w - 1 

Thus, there is an element-wise addition of triangles that satisfies 

K-\,k-i+K-i,k = Kk ( m o d 2 ) -

If the identification 2̂  <-> 1 and 7̂  -̂> 0 is made, the Fibonacci triangle of A's is in 1-1 corre-
spondence with Pascal's Triangle modulo 2. 

i \ 
111 
10 0 1 
1 1 0 11 it 
1 1 1 1 1 1 

10 0 0 0 0 1 
1 1 0 0 0 0 11 
1 1 1 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

<-» 
1 0 1 

1 1 1 

Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2 
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With this theorem, once the identification with Pascal's Triangle is made, one can see that the 
pattern continues at all levels of r(2t). For example, at the level of r(22) = 6, with 

T T 
7^ rj-i \ y i and rp rp \ y u, 
l h h Jo 

we.have the identification shown below 
I 
i I 
i I I 
10 0 1 1 
1 1 0 11 
1 1 1 1 1 1 
10 0 0 0 0 1 
1 1 0 0 0 011 
1 1 1 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 1 1 1 
1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 
1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 <~> 

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 
1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 
1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 
1 0 0 10 0 10 0 10 0 10 0 1 0 0 10 0 1 1 1 1 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Fibonacci Triangle Modulo 2 Pascal's Triangle Modulo 2 

3. THE LUCAS TRIANGLE MODULO 2 

Although the Lucas sequence is not regularly divisible, the structure of the triangle modulo 2 
is still determined by the highest power of 2 that divides [n]\ defined below. To determine the 
residues of the coefficients modulo 2, the following lemma will be needed. We will use the 
notation 2r \\m to mean 2* \m but that 2t+l\m. 

Lemma 1: If [n]\ = LnLn_x ...L^L^ then 

23*|||XI! for3(2Jfc)<w<3(2A + l)- and 23/:"1||[«]! for 3(2*-1) <n <3(2&). 

Proof: For the Lucas sequence 
Ln = 322 = 2 and Ll3 = 521 = 1 (mod 8). 

Thus, the length of the period modulo 8 is 12, because L0=2 and 1^ = 1. Also since 
Z„^0forl</?<12 (mod8), 

we have that 8 | Ln for any n. 
Also, as above, 

L6 = 18 = 2 and Lj = 29 s 1 (mod 4), 

so the length of the period modulo 4 is 6. For 1 < n < 6, Ln = 0 (mod 4) only for n - 3. Thus, 
Ln =0(mod4) forw = 3 + 6A = 3(2* + l),ifc>0. For \<n<6„ Ln =2(mod4) only forw = 6. So 
2\Ln and4|Z„ for n = 6k. 
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In [ri]\ there are Ul factors that are divisible by 2 and U factors that are exactly divisible by 
2. Thus., there are UI - UI that are exactly divisible by 22, and so 

23* ||[w]! for 3(2* -1) < w < 3(2* +1) and 23k~l \\[n]\ for 3(2* -1 ) < n < 3(2*). 

Theorem 4: The Lucas coefficients satisfy the following congruences. 
For 0 < m < n and 0 < s < t < 2, 

3n + t 
3m+ s { a for n even and m odd 

1 otherwise 
(mod 2). 

For 0 < m < n and 0 < t < s < 2, 

3n + t 
3m + s :0 (mod 2). 

Proof: Let £ be the highest power of 2 that exactly divides fc'J • Then e = el-(e2+e3), 
where 2*11[3/? + *]!, l^itfm + s]] md2eH[3(n-m) + (t-s)]\. 

By examining the different cases for n and m odd or even, and applying Lemma 1, we obtain 
the following values for e. 

For0<m<nmd0<$<t<2, 

e = < 

- I if n is even and m is odd; 
0 if n is even and m is even; 
0 if n is odd and m is odd; 
0 if n is odd and m is even. 

For 0 < m < n and 0 < t < s < 2, 

e = < 

1 if n is even and w is odd; 
1 if n is even and m is even; 
1 if n is odd and m is odd; 
2 if « is odd and m is even. 

th This theorem can be used to count the number of each of the residues modulo 2 in the n 
row of the Lucas triangle and to investigate the iterative patterns in the triangle. The Lucas 
sequence has the same recurrence relation as the Fibonacci sequence and, like the Fibonacci 
sequence, satisfies r(2) = 3, which is also equal to the period of 2. In determining the number of 
each of the residues in the 17th row of the Lucas triangle, we will use the generalized base corre-
sponding to 2 for the Fibonacci sequence, 2? = {1,3, 6, 6,12,...}. 

Theorem 5: Let N[n, 2, a] be the number of Lucas coefficients in the nih row congruent to a. 
For n = 3h + n0, 0 < n0 < 3, 

[(h + l)(nQ +1) if h is odd, f 0 if h is odd, 
N[n,2,l] = \,h x N[n,29a] = \,u. 

[(f + l)(«0 + l) if/iiseven, | ( f ) K + l) if his even, 

and N[n,2,0] = h(2-n0) 
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Proof: For n = 3h + nQ and m - 3k + mQ, if h is odd, then 

3h + n0 
3k + mn 

= 1 (mod 2), 

provided 0<m0 <n0. Therefore, there are h + 1 choices for k, and there are n0 + 1 choices for 
7?%. Thus, iVTrc, 2,1] = (h + l)(n0 +1). 

If/i is even, then 
3h + n0 
3k + m0 J% 

= J1 for k even, 
a for k odd. 

Thus, there are (-f+ l) choices for k to be even and (-|) choices for k to be odd. There are 
still (n0 +1) choices for m0, so that 

N[n, 2,!] = (•£ + l ) K +1) and N[n, 2, a] = (f)(n0 +1), for h even. 

If 0 < n0 < m0 < 2, then 
3h + n0 
3k+m() 

= 0 (mod 2). 

There are h choices for k and (2-n0) choices for m0, so that N[n, 2,0] = h(2-n0). 

Theorem 6: For 0 < m < n, the entries in the Lucas triangle denoted An m, 

3n 
3m 

371 + 1 
3m 

3n + 2 
3m 

J% 

3/7 + 2 
3m + 1 

'3/1 + 1' 
3w + l 

J ^ 

3^ + 2" 
3^ + 2 

are either all congruent to one or all congruent to a modulo 2. The entries not included in these 
triangles are congruent to zero modulo 2. 

Proof: From Theorem 4, it follows directly that the entries in the initial triangles are all con-
gruent to a modulo 2 if n is even and m is odd. Otherwise, all entries are congruent to 1. The 
entries not included in these triangles are I^+M , where 0 < t < s < 2, and so are congruent to zero 
modulo 2. 

Theorem 7: For /; = 2/_13, let A„, m denote the following entries in the Lucas triangle, 

nrt +1 
mr 

/?/; 
mr 

nrt +1 
2 \_mri+\ 

mr 
nrt +rf - 1 
mr + r - 1 
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and let VWjW denote the entries not included in one of these triangles. 

a. For i = 1, the initial triangles, A„ w, AW>OT+1., An+lm+h do not satisfy an element-wise addition 
modulo 2 as in the Fibonacci triangle. 

k For i > 1, the triangles satisfy 

V = V 

1 «+l ,w+l 1 0 , 0 

«,7W «,w+l — " n + L w + l -

Proof: For / = 1, from the Lucas triangle modulo 2, we can see that 

Alf0 + A u # A 2 f l (mod 2) 
A5? 2 + A5? 3 # A6? 3 (mod 2). 

Thus, the initial triangles do not satisfy an element-wise addition modulo 2. 
For i > 1 and 0<h,k< 27"1 - 1 , /? and k determine whether 2l~ln+h and 2l~lm + k are odd or 

even, so that 
nrt + 3h + t ' 
mr, +3k + $ 

3{2i~ln + h) + t 
3(27_1m + £) + s 

3/z + r 
3& + s| 

Thus, 
w; + 3h + r " 
TW; + 3& + s 

«/;• + 3A +1 
(m + X)rt + 3k + s 

,] (mod 2). 

(/i + l)r, + 3h + tl [3/i + r l , , 0 . 

cni+iii+3*+4sL3*+4( )-

Therefore, 
AW)/W = A„jW+1 - Aw+ljW2+1 - A 0 0 and V„>m = V «,/w+l — * / 1 + 1 , / H + I * 

From Theorem 7, the Lucas triangle of A s with / = 1 has initial triangles 

1 
2J = 11 

111 
and a 

Ta=aa 
aaa 

Using the identification T{ <-> 1 and Ta<-> a, the pattern in the Lucas triangle becomes more 
apparent. 

i 
11 
iii 
10 0 1 
110 11 
111111 
1 0 0 a 0 0 1 
l l O a a O l l 
1 1 1 a aa\ 1 1 
1 0 0 1 0 0 1 0 0 1 
110 110 110 11 

1 1 1 1 1 1 1 1 1 1 1 1 
l O O a O O 1 O O a O O l 

l l O B f l O l l O a c O l l 
l l l a a a l t l a a a l t l 

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Lucas Triangle Modulo 2 

<-> 

i 1 

1 a 1 

1 1 1 1 

1 a 1 a 1 

1 1 1 1 1 1 

Also from Theorem 7, we see that this pattern does not continue for / > 1. For example, with 
i = 2, if the following correspondence is made, 
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Ti 

l 
11 

= i l l 
1001 
11011 

111111 

«-» 1, 

then the Lucas triangle modulo 2 can be associated with a triangle of all ones. That is, the initial 
triangle will be the only triangle repeated. 

i 
1 I 

i i i 
1 0 0 1 

1 1 0 1 1 
1 1 1 1 1 1 

1 0 0 a 0 0 1 
l l O a a O l l 

l l l a f l f f l l l 
1 0 0 1 0 0 1 0 0 1 

1 1 0 1 1 0 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
l O O a O O 1 O O a O O l 
l l O a a O l l O a a O l l 

l l l a a a l l l a a a l l l 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Lucas Triangle Modulo 2 

<-> i i 

i i i 

4. THE RELATIONSHIP BETWEEN THE FIBONACCI AND 
LUCAS TRIANGLES MODULO 2 

We can use Theorem 2 and Theorem 4 to look at the relationship between the Fibonacci 
triangle and the Lucas triangle modulo 2. 

I 
I I 
I I I 
i oo i 
110 11 
1 1 1 1 1 1 
l O O a O O l 
1 l O a a O l 1 
1 1 laaal 1 1 
10 0 10 0 10 0 1 
110 110 110 11 
1 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 « 0 0 1 0 OccO 0 1 
1 1 OflflO1 1 Oaa0 1 1 

1 1 laaal 1 laaal 1 1 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 
110 110 110 110 110 11 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 
1 1 
1 1 1 
10 0 1 
110 11 
111 111 
10 0 0 001 
110 0 0 0 11 
1 1 1 0 0 0 111 
10 0 10 0 10 0 1 
110 110 110 11 
1 1 1 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 0 0 1 1 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 
1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 Lucas Triangle Modulo 2 Fibonacci Triangle Modulo 2 

Theorem 8: The Fibonacci and Lucas coefficients satisfy the following relationships modulo 2: 

s i . If 

If 

= 1, then 

then 

then 
!

0 if a borrow occurs in the n0 position, 

a if a borrow occurs in the nx position, 
1 all other borrows. 

= 0. 
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If 

If 

n 
m 
n 
m 

= a, then 

= 1, then 

n 
m\ 
n 
m 

0 if a b orrow occurs, 
1 If no borrow occurs. 

Proof: For n = 3h+'nQ = (...n2nln0)oP and m = 3k + m0 = (...7n2ml7n0)9, if M =1 (mod 2), 
then ml <nx<2 and mQ<n0<3. Thus, if /ij = 1, h is odd and H = 1 (mod 2). 

If nx - 0, then ^ = 0 and h and k are even, so that H == 1 (mod 2). 
If H = 0 (mod 2), then a borrow occurs. If the borrow occurs in the n0 position, H = 0 

(mod 2). If the borrow occurs in the nx position, then h is even and k is odd. Thus, H = a (mod 
2). For a!! other borrows, H = 1 (mod 2). 

If H = 0 (mod 2), then 0 < n0 < mQ < 3. Thus, a borrow occurs in the base 8P subtraction of 
zw from «. Therefore, H = 0 (mod 2). 

If H = a (mod 2) implies h is even and k is odd, which occurs only if nx - 0 and ^ = 1. This 
means a borrow will occur in the base 2? subtraction of m from n and H = 0 (mod 2). 

If H = 1 (mod 2), then no borrow occurs in the n0 or nx positions. However, a borrow may 
occur in other positions. Thus, 

0 if a b orrow occurs, 
1 if no borrow occurs. 

5. CONCLUSION 

The iterative patterns in the Fibonacci triangle and Pascal's Triangle modulo 2 are similar 
except for the initial triangles that are repeated in both. For the Fibonacci triangle, the initial 
triangle is 

1 
11 

T= 111 

and for Pascal's Triangle, the initial triangle is 

T= l 

ir 
These triangles arise because r(2)=3 for the Fibonacci case, which also equals the period modulo 
2 for the Fibonacci sequence and r(2) = 2 for the Pascal case, which also equals the period 
modulo 2 for the positive integers. If we look at all second-order sequences, un - aun_x +hun_2 

with initial conditions u0 - 0 and ux = 1, they can be categorized into four types. 
1. For a = 0, b = 1 (mod 2), un = un_2 (mod 2), for n > 2 and r(2) = 2 which equals the 

period of 2. 
2. For a9b'=l (mod 2), un = un_x (mod 2), for n>2 andr(2) = 3 which equals the period 

of 2. 
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3. For a = 1, b = 0 (mod 2), t/w = ww_j (mod 2), for « > 2. The prime 2 does not occur as a 
factor. 

4. For a,b = 0 (mod 2), z/„ = 0 (mod 2), for n > 2. All terms are divisible by 2. 

This means there are only four distinct triangles modulo 2 formed by the generalized coeffi-
cients, 

rn 
k 

(UkUk-l~'Ul)(Un-kUn-k-l~'Ul) 

1 
11 

101 
1. Pascal's Triangle comes from type 1 sequences: -1*1* . 

noon 
1010101 
11111111 

1 
11 

111 
1001 

2. The Fibonacci triangle comes from type 2 sequences: 11011 . 
n u n 
1000001 
11000011 
111000111 

1 
11 

111 
3. A triangle of l's comes from type 3 sequences: .y*1, . 

n u n 
l i m n 
i i i i i n i 

i n 
101 

4. A triangle of 0's comes from type 4 sequences: ^ J . . 
100001 
1000001 
10000001 

Thus, Pascal's Triangle and the Fibonacci triangle are the only two significant triangles 
modulo 2. They only differ by the repetition of the initial triangle. When the initial conditions are 
changed, the sequence is no longer regularly divisible. The triangles of coefficients from these 
sequences, such as the Lucas triangle, do not have the same iterative behavior as Pascal's 
Triangle. 
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