A GENERALIZATION OF MORGAN-VOYCE POLYNOMIALS

Richard André-Jeannin
IUT GEA, Route de Romain, 54400 Longwy, France
(Submitted September 1992)

1. INTRODUCTION

Recently Ferri, Faccio, \& D'Amico ([1], [2]) introduced and studied two numerical triangles, named the DFF and the DFFz triangles. In this note, we shall see that the polynomials generated by the rows of these triangles (see [1] and [2]) are the Morgan-Voyce polynomials, which are well known in the study of electrical networks (see [3], [4], [5], and [6]). We begin this note by a generalization of these polynomials.

2. THE GENERALIZED MORGAN-VOYCE POLYNOMIALS

Let us define a sequence of polynomials $\left\{P_{n}^{(r)}\right\}$ by the recurrence relation

$$
\begin{equation*}
P_{n}^{(r)}(x)=(x+2) P_{n-1}^{(r)}(x)-P_{n-2}^{(r)}(x), n \geq 2, \tag{1}
\end{equation*}
$$

with $P_{0}^{(r)}(x)=1$ and $P_{1}^{(r)}(x)=x+r+1$.
Here and in the sequel, r is a fixed real number. It is clear that

$$
\begin{equation*}
P_{n}^{(0)}=b_{n} \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
P_{n}^{(1)}=B_{n}, \tag{3}
\end{equation*}
$$

where b_{n} and B_{n} are the classical Morgan-Voyce polynomials (see [3], [4], [5], and [6]). We see by induction that there exists a sequence $\left\{a_{n, k}^{(r)}\right\}_{n \geq 0, k \geq 0}$ of numbers such that

$$
P_{n}^{(r)}(x)=\sum_{k \geq 0} a_{n, k}^{(r)} x^{k},
$$

with $a_{n, k}^{(r)}=0$ if $k>n$ and $a_{n, n}^{(r)}=1$ if $n \geq 0$.
The sequence $a_{n, 0}^{(r)}=P_{n}^{(r)}(0)$ satisfies the recurrence relation

$$
a_{n, 0}^{(r)}=2 a_{n-1,0}^{(r)}-a_{n-2,0}^{(r)}, n \geq 2,
$$

with $a_{0,0}^{(r)}=1$ and $a_{1,0}^{(r)}=1+r$.
From this, we get that

$$
\begin{equation*}
a_{n, 0}^{(r)}=1+n r, n \geq 0 . \tag{4}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
a_{n, 0}^{(0)}=1, n \geq 0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n, 0}^{(1)}=1+n, n \geq 0 . \tag{6}
\end{equation*}
$$

Following [1] and [2], one can display the sequence $\left\{a_{n, k}^{(r)}\right\}$ in a triangle:

	k	0	1	2	3
n					
0	1				\cdots
1	$1+r$	1			\cdots
2	$1+2 r$	$3+r$	1		\cdots
3	$1+3 r$	$6+4 r$	$5+r$	1	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots

Comparing the coefficient of x^{k} in the two members of (1), we see that, for $n \geq 2$ and $k \geq 1$,

$$
\begin{equation*}
a_{n, k}^{(r)}=2 a_{n-1, k}^{(r)}-a_{n-2, k}^{(r)}+a_{n-1, k-1}^{(r)} \tag{7}
\end{equation*}
$$

By this, we can easily obtain another recurring relation

$$
\begin{equation*}
a_{n, k}^{(r)}=a_{n-1, k}^{(r)}+\sum_{\alpha=0}^{n-1} a_{\alpha, k-1}^{(r)}, n \geq 1, k \geq 1 \tag{8}
\end{equation*}
$$

In fact, (8) is clear for $n \leq 2$ by direct computation. Supposing that the relation is true for $n \geq 2$, we get, by (7), that

$$
\begin{aligned}
a_{n+1, k}^{(r)} & =a_{n, k}^{(r)}+\left(a_{n, k}^{(r)}-a_{n-1, k}^{(r)}\right)+a_{n, k-1}^{(r)} \\
& =a_{n, k}^{(r)}+\sum_{\alpha=0}^{n-1} a_{\alpha, k-1}^{(r)}+a_{n, k-1}^{(r)}=a_{n, k}^{(r)}+\sum_{\alpha=0}^{n} a_{\alpha, k-1}^{(r)}
\end{aligned}
$$

and the proof is complete by induction.
We recognize in (8) the recursive definition of the DFF and DFFz triangles. Moreover, using (5) and (6), we see that the sequence $\left\{a_{n, k}^{(0)}\right\}$ (resp. $\left\{a_{n, k}^{(1)}\right\}$) is exactly the DFF (resp. the DFFz) triangle. Thus, by (2) and (3), the generating polynomial of the rows of the DFF (resp. the DFFz) triangle is the Morgan-Voyce polynomial b_{n} (resp. B_{n}).

3. DETERMINATION OF THE $\left\{a_{n, k}^{(r)}\right\}$

In [1] and [2], the authors gave a very complicated formula for $\left\{a_{n, k}^{(0)}\right\}$ and $\left\{a_{n, k}^{(1)}\right\}$. We shall prove here a simpler formula that generalizes a known result [5] on the coefficients of MorganVoyce polynomials.

Theorem: For any $n \geq 0$ and $k \geq 0$, we have

$$
\begin{equation*}
a_{n, k}^{(r)}=\binom{n+k}{2 k}+r\binom{n+k}{2 k+1} \tag{9}
\end{equation*}
$$

where $\binom{a}{b}=0$ if $b>a$.
Proof: If $k=0$, the theorem is true by (4). Assume the theorem is true for $k-1$. We shall proceed by induction on n. Equality (9) holds for $n=0$ and $n=1$ by definition of the sequence
$\left\{a_{n, k}^{(r)}\right\}$. Assume that $n \geq 2$, and that (9) holds for the indices $n-2$ and $n-1$. By (7), we then have $a_{n, k}^{(r)}=2 a_{n-1, k}^{(r)}-a_{n-2, k}^{(r)}+a_{n-1, k-1}^{(r)}=X_{n, k}+r Y_{n, k}$, where

$$
X_{n, k}=2\binom{n+k-1}{2 k}-\binom{n+k-2}{2 k}+\binom{n+k-2}{2 k-2} \text { and } Y_{n, k}=2\binom{n+k-1}{2 k+1}-\binom{n+k-2}{2 k+1}+\binom{n+k-2}{2 k-1} .
$$

Recall that

$$
\binom{a}{b}=\binom{a-1}{b}+\binom{a-1}{b-1}=\binom{a-2}{b}+2\binom{a-2}{b-1}+\binom{a-2}{b-2} .
$$

From this, we have

$$
\begin{aligned}
X_{n, k} & =2\left(\binom{n+k-2}{2 k}+\binom{n+k-2}{2 k-1}\right)-\binom{n+k-2}{2 k}+\binom{n+k-2}{2 k-2} \\
& =\binom{n+k-2}{2 k}+2\binom{n+k-2}{2 k-1}+\binom{n+k-2}{2 k-2}=\binom{n+k}{2 k} .
\end{aligned}
$$

In the same way, one can show that $Y_{n, k}=\binom{n+k}{2 k+1}$; this completes the proof.
The following particular cases have been known for a long time (see [5]). If $r=0$ (DFF triangle and Morgan-Voyce polynomial b_{n}), then

$$
a_{n, k}^{(0)}=\binom{n+k}{2 k}
$$

and, if $r=1$ (DFFz triangle and Morgan-Voyce polynomial B_{n}), then

$$
a_{n, k}^{(1)}=\binom{n+k}{2 k}+\binom{n+k}{2 k+1}=\binom{n+k+1}{2 k+1} .
$$

Remark: The sequence $w_{n}=P_{n}^{(r)}(1)$ satisfies the recurrence relation $w_{n}=3 w_{n-1}-w_{n-2}$. On the other hand, the sequence $\left\{F_{2 n}\right\}$, where F_{n} denotes the usual Fibonacci number, satisfies the same relation. From this, it is easily verified that

$$
P_{n}^{(r)}(1)=F_{2 n+2}+(r-1) F_{2 n}=F_{2 n+1}+r F_{2 n}
$$

For instance, we have two known results (see [1] and [2]), $P_{n}^{(0)}(1)=F_{2 n+1}$ and $P_{n}^{(1)}(1)=F_{2 n+2}$. We also get a new result,

$$
P_{n}^{(2)}(1)=F_{2 n+2}+F_{2 n}=L_{2 n+1}
$$

where L_{n} is the usual Lucas number.

4. MORGAN-VOYCE AND CHEBYSHEV POLYNOMIALS

Let us recall that the Chebyshev polynomials of the second kind, $\left\{U_{n}(w)\right\}$, are defined by the recurrence relation

$$
\begin{equation*}
U_{n}(\omega)=2 \omega U_{n-1}(\omega)-U_{n-2}(\omega) \tag{10}
\end{equation*}
$$

with initial conditions $U_{0}(\omega)=0$ and $U_{1}(\omega)=1$. It is clear that the sequence $\left\{P_{n}^{(r)}(2 \omega-2)\right\}$ satisfies (10). Comparing the initial conditions, we obtain

$$
P_{n}^{(r)}(2 \omega-2)=U_{n+1}(\omega)+(r-1) U_{n}(\omega)
$$

If $\omega=\cos t, 0<t<\pi$, it is well known that

$$
U_{n}(\omega)=\frac{\sin (n t)}{\sin t}
$$

Thus, we have

$$
P_{n}^{(r)}(2 \omega-2)=\frac{\sin (n+1) t+(r-1) \sin n t}{\sin t}
$$

From this, we get the following formulas, where $\omega=\cos t=(x+2) / 2$,

$$
\begin{gather*}
b_{n}(x)=P_{n}^{(0)}(x)=\frac{\cos (2 n+1) t / 2}{\cos t / 2} \tag{11}\\
B_{n}(x)=P_{n}^{(1)}(x)=\frac{\sin (n+1) t}{\sin t} \tag{12}
\end{gather*}
$$

Formulas (11) and (12) were first given by Swamy [6]. We also have a similar formula for $P_{n}^{(2)}(x)$, namely,

$$
\begin{equation*}
P_{n}^{(2)}(x)=\frac{\sin (2 n+1) t / 2}{\sin t / 2} \tag{13}
\end{equation*}
$$

From (11) and (12), we see that the zeros x_{k} (resp. y_{k}) of the polynomial b_{n} (resp. B_{n}) are given by (see [6])

$$
x_{k}=-4 \sin ^{2}\left(\frac{k \pi}{2 n+2}\right), k=1,2, \ldots, n, \text { and } y_{k}=-4 \sin ^{2}\left(\frac{(2 k-1) \pi}{4 n+2}\right), k=1,2, \ldots, n
$$

Similarly, the zeros z_{k} of the polynomial $P_{n}^{(2)}(x)$ are given by

$$
z_{k}=-4 \sin ^{2}\left(\frac{k \pi}{2 n+1}\right), k=1,2, \ldots, n .
$$

REFERENCES

1. G. Ferri, M. Faccio, \& A. D'Amico. "A New Numerical Triangle Showing Links with Fibonacci Numbers." The Fibonacci Quarterly 29.4 (1991):316-20.
2. G. Ferri, M. Faccio, \& A. D'Amico. "Fibonacci Numbers and Ladder Network Impedance." The Fibonacci Quarterly 30.1 (1992):62-67.
3. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In Fibonacci Numbers and Their Applications, ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam, I:141-61. Dordrecht: Kluwer, 1986.
4. A. M. Morgan-Voyce. "Ladder Networks Analysis Using Fibonacci Numbers." I.R.E. Trans. Circuit Theory 6.3 (1959):321-22.
5. M. N. S. Swamy. "Properties of the Polynomial Defined by Morgan-Voyce." The Fibonacci Quarterly 4.1 (1966):73-81.
6. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Quarterly 6.2 (1968):166-75.

AMS Classification Number: 11B39

