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INTRODUCTION 

In [8], A. Schinzel studied the distribution of the residues of certain two-term recurrence 
sequences modulo a prime p, and classified the sets of distribution frequencies that occur 
according to the length of a full period. In the present work, we demonstrate a kind of stability 
that arises in one case of Schinzel's work, which allows an extension of his classification to prime 
powers. We conclude by giving some examples that show his results do not extend as naturally in 
the other cases. Related results concerning distribution questions for recurrence sequences can be 
found in [l]-[7] and [10]-[13]. 

DEFINITIONS AND NOTATION 

Define the two-term recurrence relation 
u0 = 0, ux = 1, un - Aun_x + un_2 for n > 1, 

where A ^ 0 is a fixed rational integer. Let p > 7 be prime, p\A{A2 +4). Let % be a real root of 
f(x) = x2 - Ax -1 in its splitting field K over Q, and let 2ft denote the ring of integers in K. Let 
2P be a prime ideal of 2ft lying over (p) in Z. By assumption on/?, we do not incur any ramifica-
tion. It will be clear during our discourse that any splitting that may occur is not a problem. Let 
0 < e eZ, and let S(pe) denote the order of £ + 9* in 2ft/2P. Note that since £ divides 1 in 2ft, 
8{pe) exists for all e. For notational ease, for x e 2ft we denote x + 2?e by x. Define k(pe) to be 
the length of a shortest period of un and S{pe) to be the set of residue frequencies within any full 
period of un. Note that since un is a rational integer for all n, studying un (mod 2?e) is equivalent 
to studying un (mod pe). 

We prove the following theorem. 

MAIN THEOREM 

Let p > 7 be prime and e > 1. If k(p) = 4 (mod 8), then S(pe) = {0, 2,4}. 

We need some results from [8] and [16], which are stated here for the reader's convenience. 

Ward [16, pp. 619-20]. Let t be the largest integer with k{p) = kip'). Then k{pe) = pk(pe~l) 
for e > t. 
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In fact, Wall [15] conjectured that k(p)^k(p2) for every p in the special case of the 
Fibonacci sequence, but this remains a difficult and open problem. 

Scfaiiizel [8, Theorem 1], For p> 7 prime, and p\A{A2 + 4), 

(1) if k(p) s 4 (mod 8), then S(p) = {0, 2, 4}; 

(2) if k(p) = 0 (mod 8), then S(p) = {0,1, 2} or {0, 2, 3} or (0,1, 2, 4} or {0, 2, 3, 4}; 

(3) if k(p) 4 0 (mod 4), then S(p) = {0,1, 2} or {0,1, 2, 3}. 

The proof of the Main Theorem will proceed by induction on e, after some preliminary 
lemmas. 

Lemma 1., The Binet formula 

Ur, =• 

holds in K, and in di 13>e, for e > 1. 

Proof: Observe that c and - g~l are the distinct roots of/far), hence 

- ^ ( c - r 1 ) + 4 
= ^ 2 ^ 4 , 

which is nonzero in K, and hence ^4-^T1 is a unit in AT. The condition that p\A(A2 -M) ensures 
that u-+- c_1 is a unit mod ?Pe. Lemma 1 now follows easily by induction on n. Z 

For the rest of the paper, we assume additionally that k(p) = 4 (mod 8). Hence. Ward's 
result gives immediately that k(pe) = 4 (mod 8) for every e>\. 

Lemma 2. For every e>\, k(pe) = S(pe). 

Proof: Set k - k(pe) and 8 - 8{pe). Since k is even, and uk - 0. uk+x - 1, it follows from 
Lemma 1 that | * - £"* = 0 and l ^ 1 +1"*"1 = | + ~^1. Thus, 

Hence 8\k. 
Since 8(p)\8(pe), it will follow that (JY/?12) is even if we can show that 8(p) is even. But 

this follows directly from [8, Lemma 1] and the fact that k(p) = 4 (mod 8), so that us - 0 and 
u5+l - 1, and thus k < 8. Z 

Definition: Let n e denote the smallest positive integer n such that pe \un, called the rank of 
apparition of pe. 

Lemma 3: For every e>\, un = 0 if and only if n = 0 Imod-^j^-), that is, n e - k(pe) 14. 
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Proof: First note that %(J;-A) = 1, so | is a unit. Thus, 

o^"=(-r!)" 
o ^ 2 n - ( - i ) " . 

If«is odd, then since S(pe) s 4 (mod 8), f = - l o f = I o £(/>') = k(pe)\4n. 

If /i is even, then since k(pe)/4 is odd, £2" = To<J(p')|2/i o Ar(>e)/4|«. D 

Lemma 4: For all«, h > 0, 

«»+* - «„=(#* -1)«„+c-r1)""*-
Proof: By Lemma 1, 

=|^zr(r" -1"+c-r1)" - (-r1)-^) 
-un+h~un- Q 

Lemma 5: Let ^(rf; /?e) denote the number of times the residue rf appears within a full period of 
{un} (mod pe). If k(pe) = 4 (mod 8), then A(d; pe) is even. 

Proof: Denote k - k(pe). First, if n is even, then by Lemmas 1 and 2, 
ck/2-n _ (__z-l\k/2-n 

ukl2-n~ £+rl 

zkll r-n _ /_ £-l\k/2 / _ e-l\-w 

= !#„. 

Similarly, ifn is odd, then %_„ = un. Since A: = 4 (mod 8), the result follows. D 

For the rest of the paper, assume e > t, where t is the largest integer with k{p) - k(p*), and let 
k = k(pe~l). Define the pxk integer matrix T by setting 7^=^(/_1^+7_1 (mod pe), where 
0 < Ttj <pe. Then each row of Tis congruent to a full period modulo pe~l, and the rows laid end 
to end correspond to a fiill period modulo pe. We will show that the entries in any column of T 
are distinct. 

Lemma 6: The first column of T has distinct entries. 
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Proof: Assume that uik - utk for some 0<i <t <p-l. By Lemma 4, 

« * - % = o = ( | ( ' - ' )*- i)^+(- | ->)*ir ( f_o t . 

Since ^ =1 (mod/?6-1) by Lemma 2, we have 

f^-ler1. (1) 
Clearly uik e^e~\ therefore, ( ^ - ^ - 1 ) % G ^ C ^ and, hence, i/(,_/)it e0>c also. Thus, 
n e \(t-i)k. But n e = pn ,_, and A: = 4w e_l3 so /?|4(f-j), a contradiction. D 

Lemma 7: Every column of T has distinct entries. 

Proof: Assume that uik+j = %+y. for some 0 < y < & - 1 , 0 < i<t<p-\. By Lemma 4, 

and 
%+y -%=(^; -i)% +(-r1) ,V 

Subtracting these equations, and using the assumption, 

«*-«*=(?y-i)(«*-%)+«y((-r1)*-(-r1)*) 
so that 

?y(«*-%)=-«;((-r1)*-(-r1)*)-
By Lemma 6, % - % e 2?e_1 \ &e and hence 

By Lemma 1, setting n = tk + j and m = ik + j , and noting that w + w is even, 

Since p does not divide t-i, it follows that ^n~m-1 = ^(t-i)k -I G^e~l\^\ Therefore, 
l + (-l)n(-1Tly+m e& and thus f("+m) - 1 eSP. Then *(p)|2(/i+/?i) = 2(f+ 0* + 4y. Since 
£(p)|£, we get k(p)\4j and so /?|w-. Finally, this gives Uj eg? and hence {{-^~l)<<t~l)k -1) £ 
S^-1 by (2), which contradicts (1). D 

PROOF OF MAIN THEOREM 

Assume p > 7 is a prime with p\A{A2 +4) and k{p) = 4 (mod 8). The case e = 1 is just 
Schinzel's result. 

As before, let t be the largest integer such that k{p) - k(pf). It is easy to see that {\un\} is a 
strictly increasing sequence for n > 2. Since ux-\ and w2 = A, it follows that f exists. We now 
consider the case in which t > 1. Let 1<£<^. Let A(d;pe) be as in Lemma 5. Clearly, 
>4(rf; / / ) < A(d; p). Since {0} cz S(p), it follows that 0eS(pe). By Lemma 3, k(pe) = 4n e. 
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Thus, A(0\ pe) = 4 and 4 eS(pe). By Lemma 5, A(d\ pe) is even for every residue d. Since 
2 ^S(p), there is a residue d such that ^4(^; p) = 2. Let ww be such that un = d (mod p), and 
suppose w„ =rf' (mod/?6). Since A(d';pe) is even, A{d'\pe)>\, and A{d'\ pe)< A(d; p) = 2, 
we must have 4(</'; / / ) = 2. Thus, S(pe) = {0, 2, 4} 

We now proceed by induction on e. Assume the theorem is true for e- 1, e > t + l. By 
Ward's theorem, k(pe) = 4 (mod 8). 

Let x be any residue modulo pe appearing in T. Let j be the least positive integer such that 
Uj = x(modpe), and let 0<y <pe~l satisfy Uj = y (mod/?6-1). By hypothesis, y occurs either 
two or four times in any full period modulo pe~l. 

Notice any two entries in the same column of T are congruent modulo pe'\ since their sub-
scripts differ by a multiple of k(pe~l). Hence, y will occur in either two columns or four columns 
of T. Since x = ape~l +y for some 0 < a < p, x must occur once in each of the same columns, 
and nowhere else, so x will occur in T either two or four times. Thus, S(pe) cz {0, 2, 4}. Since 
there is at least one residue modulo p that does not occur in T, there will also be at least one 
residue modulo pe not occurring in 7, so S(pe) = {0,2, 4}. ~ 

Remark: It follows by the proof of the Main Theorem that ife>t, then A(d\ pe)- A(d\ p). 

Examples: We have shown that in the case k(p) = 4 (mod 8), Schinzel's result holds for any 
power of/?; that is, S(pe) = {0,2, 4} for all e > 1. We give examples here to show that an analo-
gous generalization does not hold in the other cases of Schinzel's result. 

First, we consider the case k =£ 0 (mod 4). There are two subcases to consider: 
(1) £(/?) = {0,1, 2, 3}. If^ = land/? = ll,then5(/?2) = {0,l,2,3,ll}. 
(2) £(/?) = {0,1, 2}. If ^ = 4and/? = 19,then4S'(/?2) = {0,l,2,19}. 

Next, we consider k = 0 (mod 8). There are four subcases to consider: 

(1) S(/0 = {0,1,2,4}. If^ = land/? = 23,then^(/?2) = {0,2,4,23}. 
(2) 50?) = {0,1,2}. If ,4 = 3 and/? = 11, then 5(/?2) = {0,2,11}. 
(3) S(p) = {0,2,3}. If ,4 = 2 and/? = 17, then5(/?2) = {0,2,19}. 
(4) S(/?) = {0,2,3,4}. If ,4 = 2 and/? = 11, then S(/?2) = {0, 2, 4,13}. 
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