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1. INTRODUCTION 

The purpose of this paper is to outline an application of number theory in medicine. More 
specifically, a linear second-order recurrence relation is utilized in a technique for the diagnosis of 
breast cancer. This continues a tradition in this journal of applications of second-order recur-
rences. Indeed, the very first issue contained an article by Basin [1] on the Fibonacci sequence in 
art and nature, and the tradition has been maintained over the years by such authors as Botten [2] 
who applied the more general sequence of Horadam to a problem in optics. Number theorists, 
while rightly valuing their work for its beauty and intrinsic worth, are not always aware of the 
extensive application of the elegant techniques they develop. 

In this paper we develop an inhomogeneous linear second-order recurrence relation of the 
form 

St - #!#,_! - B2St_2 =B3 (1.1) 

for St, the relative thermal energy lost by the skin during ultrasonography. (Ultrasonography is a 
process of visualization of deep structures of the body by recording the echoes of pulses of ultra-
sonic waves directed into the tissues.) The solutions of (1.1) are then used to distinguish benign 
and malignant lesions. 

The single recurrence relation of the form (1.1) was derived from three interrelated difference 
equations in a diagnostic model of a breast screening aid (Thornton, Hung, & Hirst [9]). It 
described the temporal energy changes S(t) (St = 8(t)/ S(t0)) in infrared response of the breast 
surface when ultrasound is applied to a suspect lesion for an extended time and the results used to 
evaluate successively the dependent biophysical variables of metabolic energy generated M(t) 
and the blood perfusion P(t) at each time period. (Perfusion refers to the passage of blood 
through vessels of a specific organ.) In the present paper an alternative use is made of the three 
basic difference equations to establish a matrix method which allows S, M, and P to be evaluated 
at any subsequent time period in one set of matrix operations from the curve fitting to a set of 
experimental data. This avoids the need for the previous successive dependent calculations at 
each stage. The biophysical model [9] and clinical background to the project are summarized 
below in order to appreciate the manner in which the equations arise. 

There is a need to minimize biopsies for benign impalpable lesions—those unable to be felt by 
touch—detected in breast cancer screening programs for healthy women (Hirst & Kearsley [4]). 
It is the purpose of this project to help reduce unnecessary and potentially harmful interventions 
into the lives of healthy women yet not miss any malignant cases. 

Mammography is currently the only reliable means of detecting breast cancer before a mass 
can be felt by the act of physical breast examination. More sensitive diagnostic techniques used at 
early stages of breast cancer, as well as improved management of the disease itself, are now 
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saving more than half of the women in whom breast cancer is detected at its early stage 
(Henderson [3]). However, because of the nonspecificity of the mammographic appearance of 
many malignant lesions, false positives can occur: that is, they are positive on screening but cancer 
is not subsequently diagnosed. Ultrasonography is used as a complement to mammography 
because the ultrasound characteristics of malignant lesions are often highlighted in dense 
parenchyma (the functional elements of an organ) and cystic lesions usually can be differentiated 
from solid masses. 

2. THE BIOPHYSICAL BASIS AND MATHEMATICAL MODEL 

Human skin emits infrared radiation, and the total radiated power per unit area, WT (watts 
per meter squared per second), is given by 

WT = eoT\ (2.1) 

where s is the skin's emissivity and T (°K) is the temperature of the skin area concerned. (The 
emissivity is a measure of how well a body can radiate energy; it has a value between 0 and 1.) a 
is Stefan's constant, which comes into many biomathematical applications (Reuben & Shannon 
[8]). The emissivity is approximately unity throughout the spectral region used in infrared 
thermographic studies. For a local change in skin temperature from T(t0) at time tQ to T(t) at 
time t, 

Wnt) I Wnh) = 5(0 / S(t0) = (7X0 / 7X'o))4• (2.2) 

Therefore, within a specific spectral range such as the small changes in the breast skin 
response during sonification of a suspect lesion we can plot the observed values of T(t)/T(tQ) as 
a convenient basic parameter of thermal energy transfer which permits direct comparisons with St 
calculated from the difference equations of the model described below. 

Breast tissue is glandular, fibrous, and fatty, the last of which is the main bulk of the breast. 
Let U9 M, P9 and S be, respectively, the ultrasound energy transmitted, the metabolic energy gen-
erated, the thermal energy carried away by perfusion and the thermal energy lost by emission from 
the skin. Figure 1 shows the energy distribution for these variables, which are all functions of 
time, when diagnostic ultrasound is directed on to the skin in the direction of the suspected lesion. 
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FIGURE 1. The Energy Transfer Diagram 

254 [JUNE-JULY 



THE USE OF A SECOND-ORDER RECURRENCE RELATION IN THE DIAGNOSIS OF BREAST CANCER 

Diagnostic ultrasonography utilizes a frequency range between 1 and 10 million hertz (1 x 106 

cycles per second). Such sound waves can only be transmitted in solids and liquids. By way of 
comparison, a frequency range of 20 to 20,000 cycles per second provides the stimulus for the 
subjective sensation of hearing [10]. When an ultrasound beam passes through tissue, energy is 
partly absorbed and converted to heat. This causes a rise in tissue temperature which depends 
upon several factors such as the heat conduction and transport by blood flow from the exposed 
tissue into surrounding regions. Figure 2 is a flow diagram to link these energy components. 

ft ill 
FIGURE 2. The Flow Diagram 

If bP represents that part of the ultrasound energy which is absorbed and carried away by 
perfusion (0< b < 1), then U-bP is the ultrasound energy which reaches the lesion. The perfu-
sion factor b is typically about 0.85 in this sort of work. Since it is generally recognized that there 
is increased metabolic activity within breast tumors, we can assume that the ultrasound energy 
received on the lesion will increase the local metabolic activity as formulated in 

M(t) - M(t -1) = ju[U{t -1) - bP(t -1)]. (2.3) 

The metabolic energy that remains after deducting part of it due to the energy lost from the skin 
and perfusion is M-S-{l-b)P. Since increased blood flow is associated with increased 
metabolic activity (Love, [7]), the increase in perfusion rate is associated with the increase in this 
remaining metabolic energy as expressed in 

P(t)-P(t-l) = X[M(t-l)-S{t-l)-(l-b)P(t-l)l (2.4) 

Furthermore, skin temperature results primarily from blood perfusion to the tissues and the blood 
flow in the superficial veins (Love, [7]), as represented by 

S{t) = aP(t). (2.5) 

There are two negative feedback loops shown in Figure 2, in which a line with an arrowhead 
represents a proportional effect and a line with a spearhead represents an integral effect. The 
proportional effect occurs when a high level of one variable leads to a high level (positive effect 
indicated by solid line) or low level (negative effect indicated by dotted line) of another variable. 
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An integral effect is one in which the rate of increase of one variable depends upon the level of 
another variable. For example, in the loop formed by the lines marked 1, 2, and 3, if P is very 
high, then S will be very high, but high S will lead to a low value of M-S-(l-b)P, which in 
turn will cause a decrease in P. The second negative feedback loop is formed by lines with heads 
marked 4, 6, 7, and 3. If P is very high, then U -bP will be low, which will cause a low M and, 
hence, a low M-S-(l-b)P, which in turn will cause a decrease in P. 

3. THE DIFFERENCE EQUATION 

The three equations (2.3), (2.4), and (2.5) can be combined as follows [9]: 

akfiUit -2) = aXM(t -1) - aXM(t - 2) + aXjubP(t - 2) [from (2.3)] 
= aP(t) - aP(t -1) + aXS(t -1) + aX{\ - b)P(t -1) 

- aP(t -1) + aP(t - 2) - aXS(t - 2) - aX{\ - b)P(t - 2) 
+ aXjubP{t - 2) [from (2.4)] 

= S(t) - S(t -1) + aXS{t -1) + X(l - b)S(t -1) 
- S(t -1) + S(t - 2) - aXS(t - 2) - X(l - b)S(t - 2) 
+ XjubS(t-2) [from (2.5)] 

= S(t) -(2-aX- X(l - b))S(t -1) + (1 - aX - X(l - b) + Xjub)S(t - 2). 

Since the ultrasound energy applied at the surface is constant, we set k - U(t - 2). For 
scaling convenience we express S(t)/S(t0) as 5,, so that we can rewrite the second-order 
inhomogeneous linear difference equation as 

S, - [2 -^- ; i ( l -Z0K_ 1 - [^- l + ̂  (3 J) 

The characteristic equation of this is 

r2-[2~Xa-X(l-b)]r-[Xa-l + X(l~b)-Xjub] = 0, (3.2) 

from which we get 
r = (2-Xa-X(l-b)±JD)/2, (3.3) 

where D = X2 (a - b +1)2 - 4Xjub. The solutions of the homogeneous part of (3.1) are of the form 

Qr/+C2r2 ifD>0, 
Sf^lC/ +C2trl ifZ> = 0, 

Qi?' cos(0O + C2i?' sin( 0t) if Z> < 0. 
(3.4) 

In the context of the present paper, we note that equations (2.3), (2.4), and (2.5) can also be 
expressed in matrix form: 

(3.5) 
1 -a 0] 
0 1 0 
0 0 IJ 
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Now 
"1 
0 
0 

- a 0" 
1 0 
0 1 

- l 

= 
"1 a 0" 
0 1 0 
0 0 1 

so if we let V(t) = [S(t), P(t), M(t)f 

r l a 0] 
0 1 0 

_0 0 l j 

0 0 o" 
\-X \-X(\-b) X 
L 0 -bju 1_ 

C = 
"l a 0] 
0 1 0 
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f 0 1 
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["-Xa a(l-/ 
-X 1-X 

L ° 

— 
0 
0 

/iU(t-\) 

b) X 
hju 1 

and L = 

and 

then 
V(t) = LV(t-l) + C 

= LtV(0) + (Lt-l + Lt-2 + -~- + L + I)C 
= LtV(0) + (Lt -I)(L-iylC. 

Although this latter expression is algebraically tedious, it can be numerically useful as fol-
lows: The first step of fitting St to a set of experimental data yields the parameters a, X and ju (as 
in the example of Table 1). These parameters can then be used in the above matrix equation to 
evaluate S, M, and P at any subsequent time period in one set of matrix operations rather than 
carry out a series of successively interdependent calculations. 

4 SOLUTIONS 

Horadam and Shannon [5] expound a method for solving equations of the form (3.1). For 
notational convenience, we let 

^ = 2 - ^ 1 - ^ ( 1 - * ) , 
B2 =Aa-l + A(l-h)-Ajub, 
B3 -aXjuk IS(t0), 

so that the recurrence relation (3.1) can be rewritten as 
3 

in which St_3 is treated as though it were unity and t = 0,l,...,n, wheren + \ is the number of 
data points. Suppose St is the experimental data. The method of least squares is employed to 
estimate 2? • (the estimate of Bj is denoted as Bj). The sum of squares of errors, SSE, has the 
form of 

n( 3 V 

t=l{ J=l J 
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By differentiating equation (4.2) with respect to Bt (i = 1,2, 3) and equating each of them to 
zero, three normal equations will be obtained, that is, 

SnBl + SnB2 + Sl3B3 = Ex 

S2lBx + S22B2 + S23B3 = E2 

S3lBl + S32B2 + S33B3 = E3 

or 
SB = E, (4.3) 

where 

, and E-
\EA 
E7 

[Esi 
in which 

S^t^-^-j and £ , = I ^ _ , (',7 = 1,2,3). 
t=2 t=2 

Therefore, 
B = S~lE. (4.4) 

The matrix £ is symmetric, so the Choleski-Turing method can find the inverse in an efficient 
manner (Irving & Mullineux [6]). There are five different situations that can occur depending on 
the values of D and r in an equation (3.3) and details are given in [9]. As described there, the 
parameters a, X, and ju were computed from the equations in Section 4 by fitting the model to the 
thermal data. The values presented in Table 1 are for several cases for a value ofb = 0.85 which 
corresponds to perfusion conditions for a lesion of approximately 5cm below the skin surface. 

TABLE 1. Results of Fitting the Model to the Experimental Data Using b = 0.85 

Patient 

A 

B 

C 

D 

Remarks 

Benign 

Benign 

Malignant 

Malignant 

D 

1.9828 

2.3857 

-1.4888 

-1.2115 

a 

0.8050 

0.8144 

0.8491 

0.8409 

X 

1.6222 

2.2098 

2.7175 

1.8230 

M 
0.0757 

0.2869 

0.9589 

0.7220 

5. CONCLUSION 

Results from the project suggest that an infrared temporal response measured over an interval 
of several minutes with simultaneously applied ultrasound stimulation of the suspect region can 
provide additional information which may help to distinguish between benign and malignant 
lesions. Where a malignant process is present, a differential cooling pattern occurs in the local 
skin surface zone prior to recovery to the initial temperature at the skin [9]. Different responses 
(no recovery) were observed in benign lesions. From the experimental observations so far, it 

S = \ 
Sn Sl2 

^21 ^22 

_^31 ^32 ^ ' 

J13 
^23 

33 

B = \ 
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seems that, if the response curve shows an initial cooling and the fitting of data gives D < 0 and 
ju > 0.7, then it indicates a malignant lesion. The second-order difference equation of the original 
model [9] reasonably accounts for the thermal changes observed on the skin of the breast, and the 
matrix method presented here permits improved computational convenience in determining the 
response, metabolic energy, and perfusion in the successive time periods. 
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