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In this paper we wish to describe how certain identities for infinite products lead to some 
striking infinite products involving terms of binary recurrences. 

1. INFINITE PRODUCTS 

We begin with the result on infinite products. 

Theorem 1: If |x|<l, S is a set of positive integers and h and g are functions such that \g(x)\, 
\h(x)\< Cxa for all x, where C > 0 and a > 0 are constants, then 

Yl(l + xk)g(k)/k(l-xk)h(k)/k =exp 
keS 

X too 

-Z E(A(d) + (-l)n/<W)) 
n=\ d\n n 

deS 

Proof: Let 
F(x) = ]J(l + xk)gW/k(l-xk)hW,k. 

keS 

Note that the infinite product converges absolutely for |x|<l. Then 

logF(*)= W ^ l o g ( l + xV^log(l-**) 

keS & n=l n keS * n=l n 

Since |x|<l and g(k) mdh(k) are bounded by powers of k, we see that the two double series 
converge absolutely, and so we may interchange the order of summation. We obtain 

\nld . 

n=l n d\n n=l n d\n 
deS deS 

= -It—It(Kd)H-ir"'g(d)). 
n=l n d\n 

deS 

If we exponentiate, the result follows. 
The following two corollaries are the results we will be using in what follows. In the first 

corollary, we take S to be the set of odd integers and g=-h = f, where/is any function that 
satisfies the order of magnitude bound on Theorem 1. In the second corollary, we take S to be 
the set of natural numbers and g=-h = f as before. 
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Corollary 1.1: Under the hypotheses of Theorem 1, we have 

*° (1 4- r2*+1 Y(2*+1)/(2*+1) [ *»( \v2k+l 
I r ^ T =exp 2£ S/(d) X 

^ O V 1 x J [ k=0\d\2k+l J 
Corollary 1.2: Under the hypotheses of Theorem!, we have 

2Jfc + l | 

+ 0 0 / 1 , ^k f{k)/k 

2, BINARY RECURSIONS 

Consider the binary recursion relation 

un+2=aun+1+hu„, n>0, (1) 

where u0 and ux are some given values. Let a and /? be the roots of x2 -ax-b = 0, where we 
take 

a + ̂ a2+4h , _ a-^a2+4b 
a _ a n ( | /y = : _ 

2 2 
If we assume a > 0 and a2 + 4Z> > 0, then we have that 

\p/a\<l. (2) 

Let {Pn} be the solution to the recursion (1) with initial conditions PQ = 0 and Px = 1. Then it 
is well known that we may write 

If we let {£?„} be the solution to (1) with QQ - 2 and 2i = a,tnen w e n a v e 

Qn=a"+Pn, (4) 

The most well known of these sequences are the Fibonacci and Lucas numbers that satisfy (1) 
with a~b-\. In this case, 

i+Vs A a i-Vs 
a - and / ? - > 

2 2 
3, SOME ARITHMETIC FUNCTIONS 

In our applications of Corollaries 1.1 and 1.2, we will take / to be some well-known 
arithmetic functions, namely, the Euler function, <p, and the Mobius function, ju. The reason for 
discussing these two function is that they have the following well-known properties: 

5>(<0 = " (5) 
d\n 

and 
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i /*o={i r>\. (6) 
d\n ^ 

These two results allow us to easily sum the infinite series that appear on the right-hand sides 
of Corollaries 1.1 and 1.2. Unfortunately, not many other arithmetic functions have such simple 
sums as in (5) and (6). 

A generalization of the Euler function, namely, the Jordan functions, Jk, satisfies 

but this leads us to sums of the form 

which have closed-form expressions { 

d\n 

+00 

I"*-1*", 
«=1 

of the form 

AW 
a-*r 

where Pk is a polynomial. For general k, the polynomial Pk is not that tractable, and so we have 
chosen to go with just the Euler function. 

A function that generalizes both the Euler function and the Mobius function is the Ramanujan 
sum, cw(m), which can be defined by 

d\(n,m) 

Then we have cn(l) = ju(n) and cn(0) = <p(n). The Ramanujan sum has the nice property that 

Z ( \ - \ n n \ m ? cdKm)-\Q otherwise. 
d\n ^ 

If we use this in the corollaries, we end up with sums of the form 

d\m 

which are easy to deal with for individual m, but not in general. 
Therefore, in what follows, we shall restrict ourselves to the use of only the Euler and 

Mobius functions. 

4. APPLICATION OF COROLLARY 1.1 

If we let / = <p or //, then, since <p(ri)<nmd \ju(ri)\<l, we see that we can use either of 
these choices in Corollary 1.1. If |x|< 1, then we have, by (5), 

+oo v 2 « + l [ +oo I / 9 \ 

A^OV1 x J [ n=0 ^n ^ l d\2n+\ J I »=0 
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Similarly, if we use (6), we obtain, for \x\< 1, 

.+00 

n 
Theorem 2: We have 

-*ofl + x2k+l\»(2k+W2k+V 

k=0 1 v2k+l - e 
„2x (8) 

Q: •2k+l 

and 
+O0 ( 

n 
k=0 

,<p(2k+l)/(2k+l) ( 
= exp 

-2b 

V a4a2 + 4b 

a1 +2h-a^az +4b 

( 9 ) 

= exp (10) 
y 

Proof: Let x = PI a. By (2), we see that |x|< 1, and so we can use (7) and (8). We have 

^l + (j3/a)2k+lY(2k+m2k+l) *° (a2k+l
 +j32^V(2k+m2k+1) 

' I I ~Z2k+l o2k+l 
k==0ya -p j 

f(2k+l)/(2k+l) 

+00 f 

0U-G0/a) 2&+1 
J 

n a 2fc+l 

Taking / = <p and // gives the left-hand sides of (9) and (10), respectively. 
If we put x = pi a into the right-hand side of (7), we obtain 

2(0/a) _ lap _ 2(-b) __-2bla_ -2b 
l-(pia)2'{a2~p2)~{a-p)P2~ a-fi ~ a ^ 4 £ ? 

which completes the proof of (9). 
To prove (10), we put x- p I a into the right-hand side of (8) and obtain 

p\_a2+2b-a4a2+4b 
\aj -b 

which proves (10) and completes the proof of Theorem 2. 

If we take a = b = 1 to obtain the Fibonacci and Lucas sequences, we get the following corol-
lary. 

Corollary 2.1: We have 

and 
n 
k=0 

n 
fc=0\ 

\<p(2k+l)/(2k+l) 
^2k+l 

^F2k+l) 

L 
v//(2k+l)/(2k+l) 

'2A:+-1 

-e~^ 

- 3 + V 5 

^5F2k+l J 
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5. AN IDENTITY FOR MULTIPLICATIVE FUNCTIONS 

Theorem 3: Let/be a multiplicative function. 

1) Ifn is odd, then 
X(-iy/d/(rf)=-i/(rf). 
d\n d\n 

2) Ifn is even, n = 2sm, s>l, and m is odd, then 

X(-l)"W/(«0 = I/(«0-2/(2*)I/(*). 
d\n d\n s\m 

Proof: Ifn is odd and d\n, then n/d is also odd. Thus, ifn is odd, we have 

X(-l)"W/(^) = I H)/(<0 = -£/(«*), 
d|w c/|« d|« 

which proves 1). 
Suppose n is even and write n = 2srn, where s > 1 and w is an odd integer. Then 

j:(-l)"ldf(d)= X f(d)- Zf(d) = Tf(d)-2 £/(</). 
d\n d\n d\n d\n d\n 

n/d even n/d odd «/dodd 

Now if <i|w and w/rf is odd, we can write d - 2sS, where 8\m. Thus, 

I(-l)"/rf/(rf) = I/(*0-2S/(2'«5). 

Since/is multiplicative, we can write f(2sS) = f(2s)f(S) and this gives 2) and completes the 
proof of the theorem. 

The following corollary is just a rewriting of Theorem 3 in a form applicable to Corollary 1.2. 

Corollary 3.1: Let/be a multiplicative function. Then, with the notation of Theorem 3, we have 

f2Z/(rf) if ̂  is odd, 
^f(d)(i-(-iy/d) = 
d\n 

d\n 

2f(2s)Yf(d) tfn = 2smisQVQn. 
d\m 

We now apply the corollary to our specific choices of function, namely, <p(ri) and ju(n). 
Since both of these are multiplicative, we can apply Corollary 3.1 to obtain the following result. 

Corollary 3.2: We have 
' is odd, 
is even, 2>«o(i-(-.r<>{r III 

d\n K d\n 

and 
[2 if7! = l, 

^M(d)(l-(-lfd)= -2 ifn = 2, 
*b [0 if ft > 2. 
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Proof: If n is odd, then we have 

25>(d ) = 2ii, 
d\n 

and If n-2sm is even, with s>\ and m odd, then 

2<p(2s)J^(p(S) = 2-2*-1 -wi = 2*w = /i. 

This proves (11). 
If n is odd, then we have 

2-1 = 2 ifw = l, 
if n > 1. 

If « = 2*/w is even, then 

2//(2')5>(,5) = _)2fi(2') if/if = l, 

and 

//(2s) = 

0 if m > 1, 

1 if j = l, 
[0 i fs>l . 

If we combine these last two results, we see that 

W ) Z ^ = { 0 otherwise. 
This proves (12) and completes the proof of the corollary. 

6e APPLICATION OF COROLLARY 1.2 

If we proceed as we did in section 4 and now apply Corollary 3.2, we obtain the following 
theorem and corollary. 

Theorem 4: We have 

Corollary 4.1: We have 

L, 

= exp . . and IT 
{a2-p2 ) l\ 

w Qk ] 
Kk)lk 

(cc-P)Pk 
= exp| 

f2ap-p^ 

W T Y
(k),k +»( r Yw/k 

Vkk) - ^ - Wk) 
AMS Classification Numbers: 11B37, 11B39, 11Y60 

= e(-13+5V5)/2 

• > • > • > 
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