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1. INTRODUCTION 

For a monic polynomial with integer coefficients xd -a^'1 ad, the sum Sk of the kth 

powers of the zeros is an integer, for positive integer k. For prime/?, S = ax (mod/?); and hence, 
if ax - 0 then p\Sp. If ad = ±1, then similar congruences hold for sums of negative powers of the 
zeros. Illustrations are given for various types of Chebyshev polynomials with integer argument. 

2e SYMMETRIC FUNCTIONS OF ROOTS 

Consider the monic polynomial equation with complex (or real) coefficients 

xd -atdd~l -a2xd~2 ad = 0. (1) 

The roots of equation (1) will be denoted by a,j3,y,...,y/,a), and those symmetric functions of 
the roots that are called sigma functions will be denoted thus: 

^ def n 
Z.CC = a + p + '-+G), 

def 
T,af3 - a(3+ay + --+aco+ Py + •• •+/?<« +—vy/co, 

Za3fd=a3/32+a3r2 + - + a V + ^ V + -- -+/?V + •••+ ^ / V (2) 
+ p3a2+y3a2-+-'+co3a2+y3p2 + '- + (D3p2 + --+a)3y/2, 

et cetera. 

The sigma functions l a , Z<z/?, IL^Py, •••> 1 ^ - ® a r e called the elementary symmetric 
functions of a, P,/,...., co, and Vieta's Rule expresses them in terms of the coefficients of the 
polynomial (1): 

S a = fl1, £a/? = -a2, HaPy = a3, 
..., HaPy...o) = aPy...o)^{-l)d~lad. 

Each symmetric polynomial with integer coefficients can be expressed as a polynomial in the 
elementary symmetric functions, with integer coefficients ([1], p. 67). 

Therefore, if all coefficients ax,...,ad of the monic polynomial (1) are integers (positive, 
negative, or zero), each symmetric polynomial [in the roots of (1)] with integer coefficients has 
integer value. In particular, each sigma function then has integer value. 

For integer k, denote the sum of the kth powers of the roots as 

Sk™Xak=ak+fik + -+a)k, (4) 
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which is a sigma function if k> 0. The initial values Sl,S2,...,Sd may be computed successively 
by Newton's Rule: 

Sk = alSk-l + <*2Sk-2 + • • ' + ak-2$2 + ^ - 1 ^ 1 + * ' «Jk ( * = 1, 2 , . . . , £/), ( 5 ) 

and for A: > <i, Newton's Rule becomes the recurrence relation 
Sk^aA-i+a2Sk_2 + '-+adSk_d (k = d + l,d + 2,d + 3,...), (6) 

by which Sd+l, Sd+2,Sd+3,... may be computed successively. 
If the coefficients au ...,ad are integers, then Sk has integer value for all positive integers k, 

by the general result cited above for symmetric polynomials with integer coefficients. But for the 
Sk, it is simpler to note [from (5)] that Sl=a1, and the result then follows from (5) and (6) by 
induction on k. 

From Newton's Rule, the sums of powers of roots can be expressed in terms of the coeffi-
cients of the monic polynomial (1). For example, 

Sx - aly S2 = al + 2a2, S3 = ax + 3(ala2 + a3), 
54 = a\ + Aa\a2 + 4a{a3 + 2a2 + 4a4, 
55 = a\ + 5(axa2 + a\a3 + ax{a\ + a4) + a2a3 + a5), 
56 = a\ + 6axa2 + 6ax

3a3 + ax(9a2 + 6a4) + al(l2a2a3 + 6a5) (7) 
+ 2a2 + 18a2a4 + 3a3 + 6a6, 

/Sy = ax + 7(a}a2 + ax a3 + ̂  (2a2 + a4) + ax (3a2a3 + a5) 
+ a2(a2 + 2a2a4 + a3 + a6) + a2a3 + a2a5 + a3a4 + a7), 

where a7 is taken as 0 if/ > <i. 
Waring's formula (of 1762) expresses Sk explicitly ([1], p. 72) in terms of the coefficients of 

the monic polynomial (1): 

rx\r2\...rdl 

where the sum extends over all sets of nonnegative integers rl5 r2,..., rd for which 
rx + 2r2 +3r3 + --+drd =k. (9) 

The expressions (7) for SU...,S7 suggest that Sk has some interesting divisibility properties 
for prime k. 

3. DIVISIBILITY OF SUMS OF PRIME POWERS OF ROOTS 

Hereinafter, the polynomial coefficients ax,...,ad are taken to be integers, except where 
otherwise stated. 

Theorem 1: For all primes/?, Sp = ax (mod/?). 

Proof: If all roots are integers, then by Fermat's Little Theorem, 

Sp = ap+fip + --- +cop = a + fi + ~- + a) = ax (mod/?). (10) 
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In the general case, when the roots are algebraic numbers, expand Sk by the Multinomial 
Theorem: 

Sk =(a + j3 + y + -.'+a))k 

= ak+/]k+rk + '"+a)k+ Y - Haqprys ...CD\ {U) 

q+.^v=k q\r\s\...v\ 
where at least two of the indices q,r,...,v are positive integers, and the others equal zero. This 
may be rewritten as: 

"1*=**+ S t *' Xa«(3Y...co\ (12) 
q+...+v=k q\r\s\...v\ 

Each multinomial coefficient is an integer; hence, the denominator q\r\s\ ... v! divides the numera-
tor k! = k(k -1)!. Every factor in the denominator is strictly less than k\ and hence, if k is prime 
the denominator and k are coprime, so the denominator must then divide the other factor (k -1)! 
in the numerator. Therefore, if k is prime then each such multinomial coefficient is an integer 
multiple of k. 

But we have seen that, if all coefficients al,...,ad are integers, then each of the sigma 
functions in (12) has integer value. Thus, if k is any prime/?, then it follows from (12) that 

a[ = Sp+PFp, (13) 

where F is an integer* which depends on/? (and also onaua2,...,ad). Therefore, 

Sp=a?=ax (mod/0, (14) 
by Fermat's Little Theorem. • 

Corollary 1.1: Ifp is prime, then p\Sp <=> p\ax. 

Corollary 1.2: If ax - ±1, then Sp is not a multiple ofp for any prime p. 

Corollary 1.3: If ax - ±qe, where q is prime and e>\, then q is the only prime/? for which p\Sp. 

It was shown above that, if k is prime, then each such multinomial coefficient is an integer 
multiple of k. However, the converse does not hold. For example, k\/(l\)k =k(k-\)\ for all 
k >2; k\/(2\(l\)k-1) = k x((k-l)(k-2) ...3) for all k >3; 8!/(2!)4 = 8x(7x5x32) , and so on. 

Theorem 2: Sp is an integer multiple of/7 for all primes/?, if and only if ax - 0. 

Proof: If ax - 0, then equation (13) reduces to Sp - -pFp, and hence p\Sp.** 
If p\S then (by Theorem 1, Corollary 1), p\ax and, if this holds for infinitely many primes/?, 

then ax - 0. • 

The converse does not hold, since examples exist with k\Sk where k is composite. For 
example (see [2]), take d -3 with roots 1, 1,-2 (with £ a = ax = 0), for which the characteristic 

* The proof given in Theorem 1 of [2] for this result is valid only for the case in which all roots a,j3y... are 
integers. 
** This is Theorem 2 in [2]. 
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polynomial is ( x - l ) 2 (x + 2) = x3 - 3 x + 2 and Sk =2 + (-2)k. In this case, S6 = 66 so that 6\S6, 
and 6 is composite. 

Lemma: lfad - +1 , then Sk has integer values for all integers k—positive, zero, and negative. 

Proof: For general complex coefficients au...,ad/\£ad*0, then aj5y ... co = (-l)d~lad ^ 0 , 
so that no root equals 0; hence, S0 exists: 

S0 = a0 + fi° + -+a)0 - 1 + 1 + -.. + l = rf. (15) 

The monic polynomial equation inverse to (1), 

zd+Ed=Lzd-i + a£±zd-2+...+£Lz-± = o9 (16) 
«rf *</ ad ad 

has roots a - 1 , J3~l,..., 6?_1, including multiplicity. Accordingly, for k < - 1 , ^ can be constructed 
by Newton's Rule from the coefficients in (16), similarly to (5) and (6). 

If all coefficients au...,ad in (1) are integers and ad = ± 1 , then all coefficients of the monic 
polynomial (16) are integers. It follows as in (5) and (6) that Sk has integer value for all integers 
k < - 1 . Combining these results with the previous result for k>\, we get that Sk has integer 
value for all integers k. • 

Theorem 3: If/? is prime, S_p = -ad_x (mod/?) if ad = 1 , and S = arf_x (mod/?) if ad = - 1 . 

Proof: Apply Theorem 1 to the inverse polynomial equation (13), which is now 

zd +aH ,zd~l +a, ~zd~2 + '-+aiZ-1 = 0 i f a ^ = + l , 
«/-l rf-2 1 «/ , Q ^ 

zd -ad_xzd l-ad_2zd 2 axz + 1 = 0 if arf = - 1 . 

Note that this result holds for a more general polynomial with integer coefficients, with lead-
ing term -a0xd rather than xd as in (1). 

Corollary 3.1: Ifad = ±1 and/? is prime, then p\S_p ^>P\ad-\-

Corollary 3.2: Ifad = ±1 and ad_x = ± 1 , then £ is not a multiple of/? for any prime/?. 

Corollary 3.3: lfad=±l and ax=±l and a ^ = +1, then, for all primes/?, p\Sp m&p\S_p. 

Corollary 3.4 If ad = +1 and ad_x - ±qf, where g is prime and / > 1, then q is the only prime/? 
for which p\S_p. 

Corollary 3.5: If ad = ±1 and ax = ± g e and ad_x = ±q^ , where g is prime and e > 1 and / > 1, 
then </ is the only prime/? for which p\Sp, and also q is the only prime/? for which p\S_p. 

Corollary 3.6: If ad = + 1 , then there is no prime /? that divides both 5^ and S_p if and only if ax 

and a^_j are coprime. 

Corollary 3.7: If ad = ±1 and if ax and a^_j have the same set of prime divisors and if/? is prime, 
then p\Spop\axop\ad_xop\S_p. 
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Note that ax and ad_l may have different signs, and they may have different exponents for 
their prime factors. 

Theorem 4: Tfad=±l, then S_p is an integer multiple ofp for all primes p if and only if ad_x~ 0. 

Proof: Apply Theorem 2 to the inverse polynomial (17). D 

Theorem 5: For all polynomial equations of the form 

xd -a2xd~2 -a3xd~3 ad_3x3 -ad_2x2±l = 0, (18) 

with integer coefficients, both Sp and S_p are integer multiples ofp for all primes p. 
Proof: By Theorem 2, p\S since ax = 0, and by Theorem 4, p\S_p since ad =±1 and 

arf-i = 0. • 

4. APPLICATION TO CHEBYSHEV POLYNOMIALS 

The Chebyshev polynomials of the first kind are defined by the initial values: 

r0Cy)d=i, W d = j ; (19) 
with the recurrence relation 

Uy) = 2yTn_i(y)-Tn-2(y), (« = 2,3,...). (20) 
In terms of the modified Chebyshev polynomial of the first kind, 

the initial values are 

C„(z)d=f2r„U|, (21) 

C0(z)d=2, Cx{z)Aiz, (22) 
and the recurrence relation is 

C„(z) = zC„_l(z)-C„_2(z), (#1 = 2,3,...). (23) 

The characteristic polynomial for Tn(y) is 

P(x) = x2-2xy + l (24) 

In terms of the roots of the characteristic equation, 

a = y + Jy^~h P^y-J?^, (25) 
(22) becomes 

C0(2y) = 2 = a°+p°=S07 Cl(2y) = 2y = a + fi = Sl, (26) 

and it follows from (23) by induction on n that 

Ck{2y) = 2Tk(y) = ak+pk=Sk (k = 0,1, 2,...). (27) 

Theorem 6: For integer j , Tp(J) = j (modp) for all odd primes/?, and 2Tp(j + ±) = (2j +1) (mod 
p) for all primes/?. 
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Proof: \im-2y is any integer, then it follows from (22) and (23) by induction on n that 
Sk =Ck(m) = 2Tk(f>j is an integer for all integers &>0, and Theorem 1 shows that, for every 
prime/?, 

2Tp(^ySp^m(modp). (28) 

Therefore, ifĵ  =j is any integer and/? is prime, 
2Tp(j) = 2j (modp); (29) 

and hence, for every integer y and every odd prime/?, 
Tp(j) = j (modp). (30) 

Forp = 2, 
T2(j) = 2j2-l, (31) 

so that (30) holds only for odd/ 
If 2y = m = 2y +1 is odd, then, for every prime/?, (28) becomes 

for all integers/ • 

2Tp\J + -j = (2j + l) (modp) (32) 

Theorem 7: For odd prime/?, Tp(J) = j (modjp) for all integersj except multiples of/?, and if/ 
is odd (and not a multiple of/?) then T (J) = j (mod 2jp). 

Proof: For integery and odd prime/?, 

TpU) = J + ep, (33) 

where e is an integer, in view of Theorem 6. 
From the initial values (19), it follows from (20) by induction on n that Tn(y) = 2n~lyn - • • • is 

a polynomial in j of degree /? with integer coefficients, and that Tn{y) is an even polynomial in>> if 
n is even and Tn(y) is an odd polynomial iny if n is odd. Hence, if/ is an integer and ̂  is odd, 
then j 17̂  (J). Thus, for all odd primes /?, 

J + ep=Tp(j) = jb (34) 
for some integer 6. 

If/ is an even integer theny'A is even; and hence ep is even, so that e = 2f for some integer/ 
If/ is an odd integer then T0(J) and TX(J) are odd [from (19)], and it follows from (20) by 

induction on n that Tn(J) is odd for all n > 0. Thus, bothy and T (J) in (33) are odd; hence, ep is 
even, so that e = 2f. 

Therefore, for all integers j and odd prime/?, 
j + 2fp = Tp(j) = jb, (35) 

so that, if/' is not a multiple of/?, then j\(2f) and if/' is also odd then j\f. • 

Theorem 8: For prime /? > 5 and odd integer m, 2Tp(y) = /w (mod 2/?), and if w is not a multiple 
of/? then 2Tp{fj = m (mod 2m/?). 
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Proof; From (22) we get C0(m) = 2, which is even, and Cx{m) = m, which is odd; and from 
(23) we get C2(m) = m2 - 2 , which is odd. It follows from (23), by induction on n, that Cn(m) is 
even if and only if 3 \n. From (31), 

Cp(m) = 2Tp(^) = m + ep, (36) 

where e is an integer; hence, for all primes p * 3, we must have ep even. Thus, for all odd inte-
gers m and for all primes p > 5, e must be even e = 2f; therefore, 

2Tp(^) = m + 2fp^m (mod2p) (p>5). (37) 

From the initial values (19), it follows from (23) by induction on n that Cn(z) = zn is a 
monk polynomial in z of degree n with integer coefficients, and that Cn (z) is an even polynomial 
in z if n is even and Cn{z) is an odd polynomial in z if n is odd. Hence, if/ is an integer and n is 
odd, then j\Cn(j), so that for all odd primes/?, 

Cp(j) = jb, (38) 

where b is an integer, and if/ = m is an odd integer and p>5, then 

m + 2fp = Cp(m) = mh. (39) 

Therefore, if m is not a multiple of/?, then m\(2f), and since m is odd then m\f, so that 

Cp(m) = 2Tp — \ = m (mod2mp). • (40). 
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