SOME REMARKS ON $\sigma(\phi(n))$

U. Balakrishnan
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India (Submitted December 1992)

It was conjectured in 1964 by A. Makowski \& A. Schinzel [4] that, for every natural number n,

$$
\begin{equation*}
\frac{\sigma(\phi(n))}{n} \geq \frac{1}{2} . \tag{1}
\end{equation*}
$$

They remarked also that even the weaker result

$$
\begin{equation*}
\inf \frac{\sigma(\phi(n))}{n}>0 \tag{2}
\end{equation*}
$$

is still unproved. Carl Pomerance [5] gave a proof of (2). Also S. W. Graham et al. [2] stated in the abstract, their result,

$$
.576<\lim \inf \frac{\sigma\left(\phi\left(P_{m}\right)\right)}{P_{m}} \leq \lim \sup \frac{\sigma\left(\phi\left(P_{m}\right)\right)}{P_{m}} \leq 1,
$$

where P_{m} is the product of the first m primes.
Notation: We use p and q to denote exclusively primes, $m \mid n$ to denote m dividing n, and m / n to denote m not dividing n. We use $p^{a} \| n$ to mean $p^{a} \mid n$ and $p^{a+1} \mid n$. Also n is k-full means $p \mid n$ impli es $p^{k} \mid n$

First, we observe that validity of (1) for all $n \geq 1$ implies

$$
\begin{equation*}
\frac{\sigma(\phi(n))}{n} \geq 1, \tag{3}
\end{equation*}
$$

for odd n. This can be seen easily from the fact that when n is odd, $\phi(2 n)=\phi(n)$. On the other hand, (3) implies (1) can be seen with the help of (4) below. It also implies that (1) is a strict inequality if $4 \mid n$.

As in [5], we factor $\frac{\sigma(\phi(n))}{n}$ and obtain

$$
\begin{align*}
\frac{\sigma(\phi(n))}{n} & =\frac{\sigma(\phi(n))}{\phi n} \frac{\phi(n)}{n} \\
& =\prod_{p^{a} \| \phi(n)}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{a}}\right) \prod_{p \mid n}\left(1-\frac{1}{p}\right) \tag{4}\\
& =\prod_{p \mid n}\left(1-\frac{1}{p}\right) \prod_{p \mid \phi(n)}\left(1-\frac{1}{p}\right)^{-1} \prod_{p^{a} \| \phi(n)}\left(1-\frac{1}{p^{a+1}}\right) \tag{5}
\end{align*}
$$

and it follows that if n is k-full, $k \geq 2$, then

$$
\frac{\sigma(\phi(n))}{n} \geq \frac{1}{\zeta(2)} \prod_{p|\phi(n) ; p| n}\left(1-\frac{1}{p}\right)^{-1} \geq \frac{1}{\zeta(2)},
$$

for any n. (Of course, for odd and k-full n or k-full n with particular prime factors, we get better bounds from here.) In Theorem 1 below, we improve this bound in the case of any k-full n, for $k \geq 3$.

We can see from (5) that the essential problem is to prove the inequality

$$
\begin{equation*}
\prod_{p \mid n}\left(1-\frac{1}{p}\right) \geq \prod_{q \mid \prod_{p \mid n}(p-1)}\left(1-\frac{1}{q}\right) \tag{6}
\end{equation*}
$$

In fact, the conjecture for odd n (3), implies (6) for odd n. On the other hand, it is clear that, with the help of (5), (6) implies (1) with $1 /(2 \zeta(2))$ on the right side in place of $1 / 2$. Pomerance interprets (6) as follows: For odd $n \geq 1, \phi(n) \geq$ the geometric mean of n and $\phi(\phi(n))$.

We mention the following consequence of the conjecture. Call a set of primes $S=\left\{2=q_{1}\right.$, $\left.q_{2}, \ldots, q_{t}\right\}$ self-filled if, for any prime $p, p \mid \prod_{r=1}^{t}\left(q_{r}-1\right)$ implies $p \in S$. The sets $\{2\},\{2,3,7\}$ are, for example, self-filled sets. Let S as above be a self-filled set. Let $T=\left\{p_{1}, p_{2}, \cdots\right\}$ be the set of primes of the form $p_{r}=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{t}^{a_{t}}+1$ for $a_{1} \geq 1$ and the other $a_{r} \geq 0$. Observe that, for $r \geq 2$, $q_{r} \in T$. Then the conjecture implies

$$
\begin{equation*}
\prod_{p \in T ; p \notin S}\left(1-\frac{1}{p}\right) \geq \frac{1}{2} \tag{7}
\end{equation*}
$$

Indeed, assume the conjecture (3) holds for odd n. Let $n=\prod_{p \in T ; p<x} p$. With the help of (5), we see that (3) implies (6) which, in turn, implies (7) since $q_{r} \in T$ for $r \geq 2$ and x is arbitrary. [Observe that, when x is large enough, the set of prime factors of $\Pi_{p \in T ; p<x}(p-1)$ is precisely S.] When $S=\{2\}$, the corresponding set $T=T_{2}$ is the set of Fermat primes for which (7) is valid. This is easily checked thus,

$$
\prod_{p \in T_{2} ; p \notin S}\left(1-\frac{1}{p}\right) \geq \lim _{t \rightarrow \infty} \prod_{r=0}^{t} \frac{2^{2^{r}}}{2^{2^{r}}+1}=\lim _{t \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{2^{2^{t+1}}}\right)^{-1}=\frac{1}{2}
$$

which is (7). This, of course, verifies (6) also, when n is composed only of primes of the form $2^{a}+1$ and, hence, implies (1) with $1 /(2 \zeta(2))$ on the right side instead of $1 / 2$ there for such n.

Theorem 1: Let $k \geq 2$. For k-full n, we have

$$
\frac{\sigma(\phi(n))}{n} \geq \zeta^{-1}(k)
$$

Theorem 2: We have, for infinitely many primes P,

$$
\frac{\sigma(\phi(P))}{P} \geq(1+o(1)) e^{\gamma} \log \log P \text { as } P \rightarrow \infty
$$

Also, for all large n, we have

$$
\frac{\sigma(\phi(n))}{n} \leq(1+o(1)) e^{\gamma} \log \log n \text { as } n \rightarrow \infty
$$

That is, the maximum order of $\frac{\sigma(\phi(n))}{n}$ is $e^{\gamma} \log \log n$.
Theorem 2 quantifies a result of Alaoglu \& Erdös [1].
[AUG.

Proof of Theorem 1: Let $n=\prod_{r=1}^{k} p_{r}^{a_{r}}$. We note that $\prod_{r=1}^{k} p_{r}^{e_{r}}$ for $0 \leq e_{r} \leq a_{r}-1,1 \leq r \leq k$, are different integers for different k-tuples $\left(e_{1}, e_{2}, \ldots, e_{k}\right)$. Hence, the $a_{1} a_{2} \ldots a_{k}$ integers $\Pi_{r=1}^{k} p_{r}^{e_{r}}\left(p_{r}-1\right)$ are all distinct. All these $a_{1} a_{2} \ldots a_{k}$ integers are divisors of $\phi(n)$ as well. Therefore, we have $\sigma(\phi(n))$ at least as large as the sum of these divisors. That is,

$$
\begin{aligned}
\sigma(\phi(n)) & \geq \prod_{r=1}^{k}\left(\left(1+p_{r}+\cdots+p_{r}^{a_{r}-1}\right)\left(p_{r}-1\right)\right) \\
& \geq n \prod_{r=1}^{k}\left(1-\frac{1}{p_{r}^{a_{r}}}\right) \geq n / \zeta(k),
\end{aligned}
$$

since $a_{r} \geq k$ for all r, and the proof of Theorem 1 is complete.
Proof of Theorem 2: Let $2=p_{1}, 3=p_{2}, \ldots$ be the sequence of primes. Let $Q_{k}=p_{1}^{a_{1}} p_{2}^{a_{2}}$ $\cdots p_{k}^{a_{k}}$, where $a_{r}=2\left[\frac{\log p_{k}}{\log p_{r}}\right]+1$, so that

$$
\begin{equation*}
p_{r}^{a_{r}+1} \geq p_{k}^{2} \tag{8}
\end{equation*}
$$

Let m be the least integer such that $P=P_{k}=Q_{k} m+1$ is prime. We see that

$$
Q_{k} \leq \exp \left(\sum_{r=1}^{k} a_{r} \log p_{r}\right) \leq p_{k}^{3 k}
$$

and hence, by the theorem on least primes in arithmetic progression (see, e.g., [3]), we obtain $P \leq p_{k}^{30 k}$ (we do not need the best exponent), and thus,

$$
\begin{equation*}
\log \log P \leq(1+o(1)) \log p_{k} \text { as } k \rightarrow \infty . \tag{9}
\end{equation*}
$$

Now, remembering that P is prime, we get, using (4), that

$$
\begin{aligned}
\frac{\sigma(\phi(P))}{P} & =(1-1 / P) \prod_{p^{a} \|(P)}\left(1+\frac{1}{p}+\cdots \frac{1}{p^{a}}\right) \\
& \geq(1+o(1)) \prod_{r=1}^{k}\left(1+\frac{1}{p_{r}}+\cdots+\frac{1}{p_{r}^{a_{r}}}\right) \\
& \geq(1+o(1)) \prod_{r=1}^{k}\left(1+\frac{1}{-p_{r}}\right)^{-1} \prod_{r=1}^{k}\left(1-\frac{1}{p_{r}^{a_{r}+1}}\right) \\
& \geq(1+o(1)) e^{r} \log p_{k},
\end{aligned}
$$

using (8), and Mertens' theorem and the lower bound in Theorem 2 now follows from (9).
It follows from (5) that, for any n,

$$
\frac{\sigma(\phi(n))}{n} \leq \prod_{p \mid \phi(n)}\left(1-\frac{1}{p}\right)^{-1} \leq(1+o(1)) e^{\gamma} \log \log \phi(n),
$$

and the proof of Theorem 2 is complete.

ACKNOWLEDGMENT

I am thankful to Professor Carl Pomerance for his helpful suggestions and comments. I am also grateful to the referee for a simple proof of Theorem 1.

REFERENCES

1. L. Alaoglu \& P. Erdös. "A Conjecture in Elementary Number Theory." Bull. Amer. Math. Soc. 50 (1944):881-82.
2. S. W. Graham, M. Filaseta, \& C. Nicol. "On $\sigma \phi(n)$, (Preliminary Report)." Abstracts of Papers Preseried to the American Math. Soc. 13.4 (1992):357.
3. D. R. Heath-Brown. "Zero-Free Regions for Dirichlet L-Functions and the Least Prime in an Arithmetic Progression." Proc. London Math. Soc. 64 (1992):265-338.
4. A. Makowski \& A. Schinzel. "On the Functions $\phi(n)$ and $\sigma(n)$." Colloquium Mathematicum 13 (1964):95-99.
5. Carl Pomerance. "On the Composition of the Arithmetic Functions σ and ϕ. " Colloquium Mathematicum 58 (1989):11-15.

AMS Classification numbers: 11A25, 11N56, 11N64 \%\%

