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1. INTRODUCTION AND GENERALITIES 

For given nonnegative integers r and n, let us define the elements Tn(St, r) of the Auto-
correlation Sequences of any sequence of numbers {£,•}*. 

Definition: 

r „ ( S , , r ) d = X ^ . + T (0<r<«) , (1-1) 
;=0 

where the subscript / + r must be considered as reduced modulo n + \. 
Observe that Definition (1.1) differs from the definition of the Cyclic Autocorrelation Func-

tion for periodic sequences with period n +1, by the factor 1 / (n +1) (e.g., see [2], p. 25). 
It can readily be seen that Definition (1.1) can be written in the equivalent form 

T„(S„T) = "f S,SI+T +tsi+„_T+1Si, (1.1') 
z=0 /=0 

where the second sum vanishes for r - 0. Moreover, we point out that the numbers Tn(St, r) 
enjoy the following symmetry property 

r„(S„r) = r„(S„H-r + l) (0<r<») . (1.2) 

A numerical example will better clarify the above statements. 

Example: 

T5(Si9 4) = S0S4 + SXS5 + S2SQ + S3SX + S4S2 + S5S3 [from (1.1)] 
= (S0S4 + S A ) + OS0S2 + SXS3 +S2S4 + S3S5) [from (1.1')] 
= r3(5i, 2) = S0S2 + SXS3 + S2S4 + S3S5 + S4S0 + S5SX [from (1.2)]. 

For particular sequences Si9 a closed-form expression for Tn(Si9 r) can readily be found. For 
example, if Sf = i (the sequence of nonnegative integers), we have 

rn(i,T) = {2n3-3(T-l)(n2-T)+n[3r(T-2) + l]}/6. (1.3) 

Observe that, when r = 0, the identity (1.3) reduces to the well-known formula that gives the sum 
of the squares of the first n integers. 

The aim of this paper is to establish closed-form expressions for the elements of the Fibo-
nacci Autocorrelation Sequences {Tn(r)}^ defined as 

rn(T) = UF^l (i.4) 
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and to discover some properties of these integers (sections 2 and 3). In this paper, Ft and Lf will 
denote, as usual, the Ith Fibonacci number and Lucas number, respectively. The proofs of the 
obtained results are, in general, very lengthy and rather cumbersome and, in most cases, they must 
be split into four subcases according to the parity of r and n. Sometimes the residue of n modulo 
4 must also be taken into account. To save space, only one subcase for each proposition will be 
proved in full detail (section 4). The parity of Tn{r) is also discussed (section 5), and a glimpse 
of possible future work concludes the paper (section 6). 

The following Fibonacci identities will be used widely throughout the proofs: 

Fh+k+(rtfFh-k =FhLk 

lFh+k - ( ~ 1 ) Fh-k = LhFk 

[3 , I 2 1 - I 2 4 , p. 59], (1.5) 

Lfi+k + ( _ 1 ) Lh-k ~ ^h^k 

Lh+k - ( - 1 ) Lh-k = 5FhFk 

[4, (17a) and (17b)], (1.6) 

Z J7 — m(k+i)+n ^ ^ -^mk+n **m+n ~*~ \ V **n p / - I - I N - I 

Pmj+n ~ " ( nm " L1* I 1 1 ) ! , 
J=l ^m~\~l) ~l 

(1.7) 

mJ+n=: L - ( - i r - i — y=i 

2. CLOSED-FORM EXPRESSIONS FOR TH(T) 

In this section closed-form expressions for Tn(r) are established and some particular cases 
are discussed. First of all, we show in Table 1 the integers Tn(r) for the first few values of r and 
n. The results presented in this section and in the rest of the paper can be readily checked against 
this table. 

TABLE 1. The Numbers Tn(r) for 0 < r9 n< 10 

°~ 1 
2 
6 
15 
40 
104 
273 
714 
1870 
4895 

0 
1 
3 
9 
24 
64 
168 
441 
1155 
3025 

1 
4 
8 
20 
47 
117 
293 
748 
1924 

3 
8 
16 
37 
84 
202 
495 
1244 

9 
20 
37 
78 
165 
374 
877 

24 
47 
84 
165 
330 
707 

64 
117 
202 
374 
707 

168 
293 
495 
877 

441 
748 1155 
1244 1924 3025 
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By (!.!')> the numbers Tn(r) can be expressed as 
r - l 

rB(r) = X ^ + r + I ^ + ^ i ^ - (2-1) 
2=0 7=0 

With the aid of the Binet form for Fi9 (2.1) becomes 

T„(T) = - X(a 2 / + r +/?2/+T - a'jff'+T - j0'a'+T) 
5 7=o (2.2) 

where a = 1 - /? = (1 + V5) / 2. By (2.2), using the Binet form for L,, yields 

r„(0 = ̂ f̂ ,+r -^f(-i)'4 4 2 W-,+i -JZ(-i)'4-,+i, 
-> /=0 ^ 7=0 *> 7=0 D 7=0 

whence, by means of (1.8), we obtain 

r„(r) = | [4„_r + 1 - 4 - i + Ln+T - Ln_T - X(n, v)\ (2.3) 
where 

ii T («even) 
(reven), (2.4) 

0 (wodd) 
and 

fAi-r+l (» eVen) 
X(«,r) = ] (rodd). (2.4') 

[4+Z„_r+1 ("odd) 
Now, by virtue of (2.3)-(2.4'), (1.5), and (1.6), after some manipulations, we get 

\Fn+lF„_T+FnFT («even) (2.5) 
Tn(r) = \ (reven), 

[F„(Fn-T+l+Fr) (wodd) (2.5') 
and 

[FJ^+F^.y (»even) (2.5") 
r„(T)= (rodd). 

{Fn+1(Fn_T+Fr^) (»odd) (2.5'") 
The proofs of (2.5) -(2.5'") are similar; thus, for the sake of brevity, we give only the proof of 
(2.5). 

Proof of(2.5): By (2.3) and (2.4), we can write 
1 

- ~l^n+l+(n-t) ~ A?+l-(«-r) + A?+r ~ A ; - r L 

whence, by (1.6), we get (2.5). D 
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The complete factorization of Tn(r) in terms of Fibonacci and Lucas numbers can be 
obtained only for the cases (2.5') and (2.5'"). We have 

r » = 
f^(«+l)/2-rZ(«+D/2 (" = l ( m 0 d 4 » 

\F„F(n+mL{n+m_r (" - 3 ( m o d 4 » 
(r even) 

and 
\Fn+xF{n_mL(n+m_T (n s 1 (mod 4)) 

T„(r)= (rodd). 
[^i+l^n+D/2-rZ(»-l)/2 (" ~ 3 ( m ° d 4 ) ) 

Proof of (2.6): Let us rewrite (2.5') as 

T„(T) = F„[F(, + F„ 
Recalling that 

(«+l)/2+[(«+l)/2-r] T •* (n+l)/2-[(n+l)/2 

w +1 I even if « = 3 (mod 4) 
—z— is s 

2 I odd if ?7 = 1 (mod 4), 

2-T]J-

(2.6) 

(2.6') 

(2.7) 

(2.8) 

and taking into account that r is even, use (2.7) and (1.5) to obtain (2.6). • 

An analogous argument leads to the proof of (2.6'). 

2.1 Particular Cases 

By (2.5)-(2.5"'), simplified expressions of Tn(r) can be obtained for some particular values 
of T. In light of (1.2), we confine ourselves to considering values of r less than or equal to 
(« + ! ) / 2. The following results have been obtained. 

r„(0) = F„F„+1 (cf . [3,I3]) , 

IF^ (n even) 

Fl - 1 (n odd) (by using the Simson formula [3,113]), 

F„+lF„_2+Fn (neven) 

F^F^+l) (nodd), 

r„(3) = Ai Ai-2 + Ai+1 (n even) 
(« odd), 

and w + 1 
^n+2^nl2 

^A?+P (n-l)/2 

FnFn/2+l + K+lFn/2-l 

^^n^(n+l)/2 

(w = 0(mod4)) 
(w = 1 (mod 4)) 
(ws 2 (mod 4)) 
( / is 3 (mod 4)), 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
(2.13') 
(2.13") 
(2.13'") 

where |_-J denotes the greatest integer function. The algebraic manipulations necessary to obtain 
(2.9)-(2.13'") from (2.5)-(2.5'") are not difficult and are omitted for brevity. Observe that, by 
using the Binet form, the identity (2.13") can be restated in the equivalent form 
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T„(n/2) = (L3nl2+2-2Lnl2+1)/5 (/, S 2 (mod 4)), (2.14) 

and that identities (2.13') and (2.13'") can be obtained immediately by the upper identity in (2.6') 
and by the lower identity in (2.6), respectively, taking (2.8) into account. 

3. SOME IDENTITIES INVOLVING THE NUMBERS Tn(r) 

In this section we present some identities involving the numbers Tw(r). The proofs of these 
results will be partially given in the next section. 

First, let us state the recurrence relations 

r„+1(0 = r„(r)+r„_1(r)+^(2Z7„_r+zr+(_l)n+r), (3.1) 

and 

rn(T+i) = rn(T-i)-rn(T)-Fr+±(2Ln+T+(-VLn„r+1), (3.2) 

"T lri_1(T) + r i _ 1 ( r - l ) + Fr_I[l + (-l)"]/2 (rodd). 

Remark 1: Observe that, since Tn(z) has not been defined for v>n, the recurrence relations 
(3.1)-(3.3) make sense only for 0<r<n-l, due to the presence of the quantities r„_1(r) and 
r„(r + l). 

Then, let us consider the sums along the rows, the columns, and the rising diagonals of the 
triangular array shown in Table 1. Define 

K, = £rn(r), (3.4) 

Q ( r ) t f £ r „ ( r ) , (*>r), (3.5) 

and 

A=lr„ , ( r ) , (3.6) 
r=0 

and state the following propositions. 

Proposition 1: Rn=(Fn+2-l)2. 

By Proposition 1 and [3, I3 and IJ, it can readily be seen that the sum of all elements of 
Table 1 from the 0th row to the kth row (inclusive) is 

k k 

±Rn = ±Ck(r) = Fk+2Fk+3-2FM +k + 4. (3.7) 
«=0 T=0 
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Proposition 2: If T is even, 

kKT) lr t+1(T + l ) -F T [ iv + I +(*-T + l)/2] (A odd), 

whereas, if r is odd, 

C (T) = [T^M + Fr-x(Fk+i~FT+2)-FkFk_r+l~FT{k-T + \)l2 (*even) 
kKT) \Tk{T) + FT.l{Fk+2-F^2) + FkFk.T-Fr(k-T)l2 (*odd). 

Remark 2: For the same reason as that mentioned in Remark 1, the expression of Ck (r) stated in 
Proposition 2 does not apply when k = r is even, due to the presence of the addend Tk (T +1). Of 
course, in this case, we have Ck{k) = Tk(k). 

Proposition 3: 

D„ = 

- K—^ 3(F„-1) 

" ̂ 2n+3 +(n~l)Ln- 5F{n+3)/2 - r + l 
-3F„ 

(n even) 

+1 (n odd), 

where r denotes the residue of n modulo 4. 

Finally, the following sums are considered: 

4,"Z(-i)Tr„(r), 
T=0 

def A / V 4 = lf:)r„(r). 
r=0V J 

(3.8) 

(3.9) 

... , t \FnFn+i (»even) 
Proposition 4: A„ = \ 

\(Fn_1+l)2 (/i odd). 

Proposition 5: Bn -
^3n+2 

^3n+2 ~ 

^2n+2 + A?+l | 

2 J 
AI+I(5-<VI-I - v 

2 

4. PR 

(« even) 

(n odd). 

OOFS 

As mentioned in the Introduction, to save space, the identities stated in section 3 will be 
proved only for one case of the parity of r and n. The interested reader can complete the proofs 
as an exercise. 
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Proof of (3.1): (r and n even). By (2.3)-(2.4'), we can write 

r„(r) + Yn_x{r) = - (4„_r+1 + L^x_x - 2LT_X + Ln+T+l - L„_T+l -LT-0) 

~ T\^2n-t+3 ~ ^^2n-r ~ ̂ 4 - 1 + 4+r+l ~ 4-r+l ~ 4 ) 

= r„+1(r)-|(2Z2„.r+Zr_1 + Zr) 

= r„+1(r)-|(2Z,„_r + Zr+1), 

whence the recurrence (3.1). • 

Proof of (3.2): (T even and n odd). By (2.3)-(2.4') and (1.6), we can write 

iw(r) + r„(r +1) = -(4«-r+2 _ 4+i+ 4+r+2 ~ 4-r+i ~ 0 - 4+i - 4 - r ) 

~ 7l4«-r+2 ~ 4-r+l + (4+r+2 ~ ^4+1 — 4-r) + (4+r-l "" 4-r+2 ~ 4 ) 

~~ (4+r-l ~~ 4-r+2 ~ 4X1 

- r„(r - 1 ) + - (4 + r + 2 - 2Zr+1 - 4 _ r - 4 ^ + 4 _ T + 2 + 4 ) 

= Tn(T ~ l) + 3 [4+r+2 - 4-r - 4+r-l + 4-r+2 " (4+1 + 4-l)l 

= r„(r -1) - 4 + - (4+T+2 - 4 + r - 1 +4_ r + 1 ) 

= 4( r - l ) -4+ | (24 + T - l -Z w _ r + 1 X 

whence the recurrence (3.2). D 

Proof of (3.3): (r and ft even). By (2.5') and (2.5'"), the right-hand side of (3.3) can be 
rewritten as 

4-l(4-r + 4) + 4(4-r + 4-2) + 4-r = 4+l4-r + 4-l4 +44-2 + 4-r 

= 4+l4-r + ( 4 - 4 - 2 ) 4 + 4 4 - 2 + 4 - r 
= ( 4 + i 4 - r + 4 4 ) - 4 - 2 4 + 4 4 - 2 + 4 - r 

= 4 ( r ) - 4 _ 2 4 + 4 4 _ 2 + 4 _ T [by (2.5)]. 

Now, it is sufficient to prove that 4 - r + 4 4 - 2 ~~ 4 - 2 4 = °> * a t *s 

FnFr-2-Fn_2FT=-Fn_r. (4.1) 

To do this, consider the Fibonacci identity 

4 4 - 4 - * 4 + « = (-i)h+lFk_h_aFa, (4.2) 

which can readily be proved by using the Binet form, and put k = n, h - r - 2 (even, by hypothe-
sis), and a = 2 in (4.2) to obtain (4.1). D 
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Proof of Proposition 1: By (2.3) and [3, I2], 

5^, = L2ri+4 + 3 - 2I„+3 - X X(n, r). (4.3) 

If n is even, then by (2.4), (2.4'), and (1.8), 

fjX(n,r) = 2Ln+1 
r=0 

and Proposition 1 holds by [3, I16]. If n is odd, then by (2.4), (2.4'), and (1.8), 

XX( W ,r ) = 2 (4 + 1 -2 ) 

and Proposition 1 holds by [3, I17]. D 

Proof of Proposition 2: (r even and k odd). Put n - j + r - 1 in (3.5), thus getting 
k-t+l {k-r+l)l2 

C*W= Zr;+,-iW- Z t ^ ^ C ^ + r^^Cr)]. (4.4) 
y=i y=i 

By (4.4), (2.3), and (2.4), we obtain 
(k-r+l)/2 

^k(T)=~ 2«t (^4y+r-3 + ^4 /+ r - l "~ 2 4 - 1 + ^2J+2T-2 + ^2j+2r-l ~ ^2j-2 ~ A2/-I ~ 4 ) > 

whence, by (1.6), 

5 M 

| (k~T+l)/2 
Ck O) = ~ Z (5F4;+r-2 " $FT + L2J+2T ~ L2J) 

3 J = l 

(k-r+l)/2 k-T + 1 i(*-r+l)/2 
= Z ^4/+r-2 1 ^ + ~ Z (Llj+lr-LljY 

j=l Z ^ ;=1 

(4.5) 

By (4.5), using (1.7) and (1.8) yields 

Ck(T) = ^(F2k_T+4-F2k_T-FT+2+FT_2)-F^ 

whence, by (1.5), 

Q W = | ( ^ + 2 - 4 ) - f r ( i - ^ l ) / 2 + j ( U - ^ r i t - t t 2 + l ) 

and, by (1.6) (recalling that, since r is even by hypothesis, L_T = Lr\ 

Ck(T) = Fk+1Fk+1_T-FT(k-T + l)/2 + Fk+2Fr-FTFT+1 

= FMFk+1_T + Fk+2FT -Fr[Fr+1 + ( A - T + 1 ) / 2 ] . 
(4.6) 
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By (4.6) and (2.5"), we obtain the desired result, 

Q ( r ) = rJk+1(r + l ) - F r [ / w 1 + ( * - r + l ) / 2 ] . • 

Proof of Proposition 3: [n = l (mod 4)]. By (3.6), let us write 
(«-l) /4 (w-l)/4 

A = I r„_2r(2r)+ X r„_2r+1(2r-i). 
r=0 r=l 

By (2.3)-(2.4f), and considering that L_x = - 1 , the above expression becomes 
1 (w-l)/4 J 

A,=T S (4«-6r + l -4r- l+4-4-4r) + T ( ^ + l ) 

(w-l)/4 
+ 7 ^(4w-6r+4 4 r - 2 + 4 4-4r+2 4-4r+3) 

r=l 
I (»-l)/4 1 

7 2^ (4«-6r+l + 4«-6r+4 ~ 4 r + 2Z„ - 4-4r+4 ~ 4-4r ) + T (4» + V? 

whence, by (1.6), 
j (w-l)/4 | 

A , = T Z ( 2 4 « - 6 r + 3 - 3 4 - 4 r + 2 - 4 r + 2 i w ) + - ( 4 w + l). 
5 T = l D 

By using (1.8), the identity (4.7) can be rewritten as 

4„-3+A»+3 ~ - i - 4 - 4 _ 2 + 4 + 2 n - M 2 ("~3)/2 (n+9)/2 4n-3 + 4w+3 ~ 
" ~ 5 [ 16 

w-1 
~(4"+3)/2 ~~ 4"~l)/2 ~~ 0 + ~"T~~ 4 + 4»+l + 1 

(4.7) 

(4.8) 

Now, after some formal manipulations in the subscripts of the Lucas numbers in (4.8) (e.g., 
rewrite Z(„+9)/2 - Z(„_3)/2 asZt(„_3)/2+3]+3 -Zt(„_3)/2+3]_3), use (1.6) once again to obtain 

_l 
~ 5 

_ 1 
~ 5 

_ 1 
~ 5 

4n An « - l 
2 ~ 3 ( 4 - 1) - ^(„+l)/2 + -_— Ln+L2n+l+2 

Lln+(n- \)Ln - 5F(„+3)/2 -3 (F„- l ) -Z ( „ + 1 ) / 2 + 2 

'24„+i + 4„ + (» - 0 4 - 5-F(„+3)/2 -3F + 1 

Z7 n + 3+(«-l)Z„-5F( 
»+3)/2 

2 

-3F„ + 1. • 

Proof of Proposition 4: If w is even, by (3.8), (1.2), and (2.9), we have 4 = T„(0) = FnFn+1. 
If wis odd, by (3.8), (2.9), (2.5'), and (2.5'"), we can write 
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(w-l)/2 («+l)/2 

4,=r„(o)+ 2 r„(2r)- X r„(2r-i) 
r=l r=l 

(w-l)/2 («+l)/2 
= FnFn+l+Fn J](Fn_2T+l+F2T)-Fn+l £ (iv2T+1+F2T_2), 

r=l r=l 

whence, by (1.7), 

4 = ̂ VWi + 2Fn(Fn+1 -F„_! -1)-2Fn+1(Fn+l -Fn_x -1) 
= F„F„+1-2F„_l(Fn-l) 
= F„(Fn+1-2F„_1) + 2F„_l 

By virtue of the identity [3, I19], (4.9) becomes 

^ = J F „ i 1 + ( - i r 1 F I + 2 F „ _ 1 = F„i1 + l + 2JF„_1=(F„_1 + l)2. D 

The proof of Proposition 5 concludes this section. Here, we need the following four Lucas 
identities whose proofs can be obtained with the aid of the Binet form and the binomial formula: 

(4.9) 

2 J / l^k+i ~ ^Im+hi 
7 = 0 V ' 

2 J | j^k-i - ^m+k? 
7=0V J 

mil / \ 
J][™)L2i = (L2m+LJ/2 (meven), 
7=0 ^ ' 

L(m-1)/2J 

7=0 
Za ( 2/ + 1 jAi-2/ ~[Am+l ~K~0 Lm_x"\l 2. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Proof of Proposition 5: (n even). By (3.9), (2.3), (4.10), and (4.11), we readily obtain 

I ^3n+2 ~ ^2n+l ~~ £ 
=0' 

B = • ^ + 2 - 4 « + l - Z l r ) X ( ^ r ) 
T=0V / 

and, by (2.4) and (2.4'), 

"n - { A*«+2 ^2n+l ' 

nl2 f \ nll-\f \ 

XI 2r)1^4" S (2r + l)jL«-^ 
r=0 v y r=0 v y 

(4.14) 

Using (4.12) and (4.13), the equality (4.14) can be rewritten as 

Bn = -[L3n+2 ~ Aw+1 ~ (AT? + A + A«+l + A-l) I 2] 

~7lA/7+2 _ (2A«+1 + A/7+2 + A + l ) ' 2] = — [Aw+2 ~ (A«+l + A/7+3 + A + l ) ' 2 ] . 

(4.15) 
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Rewrite (4.15) as 

®n ~ ~[^3«+2 "̂  (^(2«+2)+l + L(2n+2)-l + Ai+l) ' ^J , 

and use (1.6) to obtain the desired result, 

5. ON THE PARITY OF Yn(r) 

The problem of establishing necessary and sufficient conditions for Tn(r) to be divisible by a 
given integer k is believed to deserve a thorough investigation. Nevertheless, the general solution 
(if any) of this problem is beyond the scope of this paper. In this section we confine ourselves to 
solving the case k - 2. The proofs of the results shown in the sequel are based on the well-
known fact that 

Fm is even if and only if m = 0 (mod 3). (5.1) 

5.1 Results 

The integer Tn(r) is even if and only if 

(i) n and r even 

(0 [0 
n = \ 1 (mod 3) and r = \ 2 (mod 3), 

(ii) n even and T odd 

f° f1 
n = < 1 (mod 3) and r = < 0 (mod 3), 

[2 [0 
(iii) n odd and T even 

[0 [0,l,or2 
n = <l (mod 3) and x = \ 1 (mod 3), 

[2 [0,1, or 2 

(iv) n and r odd 

f° \2 

n = \l (mod3) and r = <0,\or2 (mod3). 
[2 [0,1, or 2 

The above conditions on the parity of Tn{r) are presented, in a more compact form, in Table 2, 
where h and k denote all nonnegative integers such that 0 < r < n. 
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TABLE 2, Forms of n and T for Tn(r) To Be Even 
n 

6h 
6/2 + I 
6/2 + 2 
6/2 + 3 
6/2 + 4 
6/2 + 5 

6/fc 
2Jfc + l 
6£ 
2* 
6k+2 
A 

r 
or 
or 
or 
or 
or 

6/fc + l 
6jt + 4 
6k+ 3 
6k + 5 
6k+ 3 

5.2 Proofs 
The proofs of (iii) and (iv) are quite easy. The proofs of (i) and (ii) are similar, so we give 

only the latter in detail. 

Proof of (ii): (n even and r odd). By (2.5") we see that Tn(r) is even if and only if 

{ A = FnFn_r+l is even (A is odd 

(Case 1), or < (Case 2). 
B = F^F^ is even [5 is odd. 

Case 1. A is even if and only if [see (5.1)] 
either n = 0 (mod 3) or n = r -1 (mod 3), 

whereas B is even if and only if 

either n = 2 (mod 3) or r = 1 (mod 3). 

It follows that Case 1 occurs if and only if 
n = <2 (mod 3) and r = 1 Q (mod3). (5.2) 

Case 2e A is odd if and only if 
n # 0 (mod 3) and « # r - 1 (mod 3), 

whereas 5 is odd if and only if 

n 4 2 (mod 3) and r # 1 (mod 3). 

It follows that Case 2 occurs if and only if 
n =1 (mod3) and r = 0(raod3). (5.3) 

Combining (5.2) and (5.3) gives (ii). • 

6. FURTHER WORK 

Flowing from our development, there seem to be other possibilities for investigation. The 
main one among them consists of applying the operator T defined by (1.1) to other second-order 
recurring sequences, such as the Lucas sequence, the Pell sequence, and so on. As for the former, 
we obtained the identity 

rn(Zf, T) = 5rn(T) + 2X(ny r). [cf. (2.4) and (2.4')]. (6.1) 
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On the other hand, we believe that our investigation of the numbers Tn(r) deserves some 
further deepening. For example, on the bases of (2.5)-(2.5'") and the identity F_„ - (-l)n+lFn, 
we can generalize these numbers to any integer value of the parameters r and n (i.e., T > n and n 
and/or r < 0). As a minor instance, it can be shown that 

Y„(-n) = F„(Fn+lLn-F„) (»even). (6.2) 

Moreover, the results presented in section 5 could be extended to the divisibility of Tn(r) by 
k>2. In particular, a study on the primality of these numbers should be undertaken. Early 
responses to this effort allow us to state the following necessary conditions for Tn{r) to be a 
prime: 

n must be even (f,x\ 
[with the unique exception F3(l) = F3(3) = F4(F2 + F0) = 3], ' * 

and 
gcd(n -r,n)<2 (T even) (6.4) 

gcd(n,r - l )<2 
(T odd). (6.5) 

gcd(n-r + l,n + l)<2 v J 

In passing, we observed that FW(Q) is composite [except for F2(0) = F2F3 = 2] and that Tn(l) is 
composite as well, except for F2(l) = 1. 
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