A NOTE ON A GENERAL CLASS OF POLYNOMIALS

Richard André-Jeannin

IUT GEA, Route de Romain, 54400 Longwy, France
(Submitted April 1993)

1. INTRODUCTION

We consider polynomials $\left\{U_{n}(p, q ; x)\right\}$ such that

$$
\begin{equation*}
U_{n}(p, q ; x)=(x+p) U_{n-1}(p, q ; x)-q U_{n-2}(p, q ; x), n \geq 2 \tag{1}
\end{equation*}
$$

with $U_{0}(p, q ; x)=0$ and $U_{1}(p, q ; x)=1$.
The parameters p and q are arbitrary real numbers (with $q \neq 0$), and we denote by α, β the numbers such that $\alpha+\beta=p$ and $\alpha \beta=q$.

We see by induction that there exists a sequence $\left\{c_{n, k}(p, q)\right\}_{n \geq 0}$ of numbers such that

$$
\begin{equation*}
U_{n+1}(p, q ; x)=\sum_{k \geq 0} c_{n, k}(p, q) x^{k}, \tag{2}
\end{equation*}
$$

with

$$
c_{n, k}(p, q)=0 \text { if } k>n \text { and } c_{n, n}(p, q)=1, n \geq 0 .
$$

The first few terms of the sequence $\left\{U_{n}(p, q ; x)\right\}$ are

$$
\left\{\begin{array}{l}
U_{2}(p, q ; x)=p+x \\
U_{3}(p, q ; x)=\left(p^{2}-q\right)+2 p x+x^{2} \\
U_{4}(p, q ; x)=\left(p^{3}-2 p q\right)+\left(3 p^{2}-2 q\right) x+3 p x^{2}+x^{3}
\end{array}\right.
$$

Particular cases of $U_{n}(p, q ; x)$ are the Fibonacci polynomials $F_{n}(x)$, the Pell polynomials $P_{n}(x)$ [4], the first Fermat polynomials $\Phi_{n}(x)$ [5], the Morgan-Voyce polynomials of the second kind $B_{n}(x)$ ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind $S_{n}(x)$ given by

$$
\begin{aligned}
& U_{n}(0,-1 ; x)=F_{n}(x), \\
& U_{n}(0,-1 ; 2 x)=P_{n}(x), \\
& U_{n}(0,2 ; x)=\Phi_{n}(x), \\
& U_{n+1}(2,1 ; x)=B_{n}(x), \\
& U_{n}(0,1 ; 2 x)=S_{n}(x) .
\end{aligned}
$$

We have used S_{n} in place of the customary U_{n} since U_{n} has been used in a different way in the present paper. For particular values of the variable x, one can obtain some interesting sequences of numbers.
(i) The sequence $\left\{U_{n}(p, q ;-p)\right\}$ satisfies the recurrence

$$
U_{n}(p, q ;-p)=-q U_{n-2}(p, q ;-p), n \geq 2
$$

thus,

$$
U_{2 n}(p, q ;-p)=0 \text { and } U_{2 n+1}(p, q ;-p)=(-q)^{n}
$$

By (2), these can also be written

$$
\begin{equation*}
\sum_{k=0}^{2 n-1}(-1)^{k} p^{k} c_{2 n-1, k}(p, q)=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{2 n}(-1)^{k} p^{k} c_{2 n, k}(p, q)=(-1)^{n} q^{n} \tag{4}
\end{equation*}
$$

(ii) It follows at once that the sequence $\left\{U_{n}(p, q ; 0)\right\}$ is the generalized Fibonacci sequence defined by

$$
U_{n}(p, q ; 0)=p U_{n-1}(p, q ; 0)-q U_{n-2}(p, q ; 0)
$$

with $U_{0}(p, q ; 0)=0$ and $U_{1}(p, q ; 0)=1$. Therefore,

$$
U_{n+1}(p, q ; 0)=\sum_{i+j=n} \alpha^{i} \beta^{j}= \begin{cases}\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} & \text { if } \alpha \neq \beta \\ (n+1) \alpha^{n} & \text { if } \alpha=\beta\end{cases}
$$

By (2), notice that

$$
\begin{equation*}
c_{n, 0}(p, q)=U_{n+1}(p, q ; 0)=\sum_{i+j=n} \alpha^{i} \beta^{j} \tag{5}
\end{equation*}
$$

More generally, our aim is to express the coefficient $c_{n, k}(p, q)$ as a polynomials in (α, β) and as a polynomial in (p, q).

2. THE TRIANGLE OF COEFFICIENTS

One can display the sequence $\left\{c_{n, k}(p, q)\right\}$ in a triangle, thus:

	0	1	2	3	\cdots
0	1	0	0	0	
1	p	1	0	0	
2	$p^{2}-q$	$2 p$	1	0	
3	$p^{3}-2 p q$	$3 p^{2}-2 q$	$3 p$	1	
\vdots					

Comparing the coefficients of x^{k} in the two members of (1), we see by (2) that, for $n \geq 2$ and $k \geq 1$,

$$
\begin{align*}
c_{n, k}(p, q) & =c_{n-1, k-1}(p, q)+p c_{n-1, k}(p, q)-q c_{n-2, k}(p, q) \\
& =c_{n-1, k-1}+\beta c_{n-1, k}+\alpha\left(c_{n-1, k}-\beta c_{n-2, k}\right) \tag{6}\\
& =c_{n-1, k-1}+\alpha c_{n-1, k}+\beta\left(c_{n-1, k}-\alpha c_{n-1, k}\right)
\end{align*}
$$

where, for brevity, we put $c_{n, k}$ for $c_{n, k}(p, q)$. From this, one can easily obtain another recurrence relation.

Theorem 1: For every $n \geq 1$ and $k \geq 1$, we have

$$
\begin{align*}
c_{n, k} & =\beta c_{n-1, k}+\sum_{i=0}^{n-1} \alpha^{n-1-i} c_{i, k-1} \\
& =\alpha c_{n-1, k}+\sum_{i=0}^{n-1} \beta^{n-1-i} c_{i, k-1} . \tag{7}
\end{align*}
$$

Proof: In fact, (7) is clear by direct computation for $n \leq 2$ (recall that $\alpha+\beta=p$). Supposing that the relation is true for $n \geq 2$, then we have by (6) that

$$
\begin{aligned}
c_{n+1, k} & =\beta c_{n, k}+\alpha\left(c_{n, k}-\beta c_{n-1, k}\right)+c_{n, k-1} \\
& =\beta c_{n, k}+\alpha \sum_{i=0}^{n-1} \alpha^{n-1-i} c_{i, k-1}+c_{n, k-1} \\
& =\beta c_{n, k}+\sum_{i=0}^{n} \alpha^{n-i} c_{i, k-1} .
\end{aligned}
$$

This concludes the proof, and the other formula can be proved in the same way
Let us examine some particular cases.
(i) Fibonacci polynomials. In this case we have $p=0, q=-1$, and $\alpha=-\beta=1$. From this, (7) becomes

$$
\begin{aligned}
c_{n, k} & =-c_{n-1, k}+\sum_{i=0}^{n-1} c_{i, k-1} \\
& =c_{n-1, k}+\sum_{i=0}^{n-1}(-1)^{n-1-i} c_{i, k-1} .
\end{aligned}
$$

(ii) Morgan-Voyce polynomials of the second kind. In this case, we have $p=2, q=1$, and $\alpha=\beta=1$. Thus, (7) becomes

$$
c_{n, k}=c_{n-1, k}+\sum_{i=0}^{n-1} c_{i, k-1}
$$

which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients of Morgan-Voyce polynomials ([1], [3]).

3. DETERMINATION OF $c_{n, k}(p, q)$ AS A POLYNOMIAL IN (α, β)

In our proof we shall need the following lemma.
Lemma: For every $k \geq 0$, we have

$$
\begin{equation*}
\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}}=\sum_{n \geq 0} d_{n, k} t^{n}, \tag{8}
\end{equation*}
$$

with

$$
d_{n, k}=\sum_{i+j=n}\binom{k+i}{k}\binom{k+j}{k} \alpha^{i} \beta^{j}
$$

Proof: Recall that

$$
\phi_{r}(t)=\frac{1}{(1-r t)^{k+1}}=\sum_{n \geq 0}\binom{k+n}{k} r^{n} t^{n},
$$

where r is a real or complex parameter and $|r t|<1$. Thus, we have

$$
\begin{aligned}
\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}} & =\frac{1}{(1-\alpha t)^{k+1}(1-\beta t)^{k+1}} \\
& =\sum_{n \geq 0}\binom{k+n}{k} \alpha^{n} t^{n} \cdot \sum_{n \geq 0}\binom{k+n}{k} \beta^{n} t^{n} \\
& =\sum_{n \geq 0} d_{n, k} t^{n},
\end{aligned}
$$

where

$$
d_{n, k}=\sum_{i+j=n}\binom{k+i}{k}\binom{k+j}{k} \alpha^{i} \beta^{j},
$$

by application of Cauchy's rule for multiplying power series. Q.E.D.
Theorem 2: For every $n \geq 0$ and $k \geq 0$, we have

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{i+j=n-k}\binom{k+i}{k}\binom{k+j}{k} \alpha^{i} \beta^{j} \tag{9}
\end{equation*}
$$

where we have used the convention $\sum_{i+j=s} a_{i, j}=0$, if $s<0$.
Proof: For brevity, we put $U_{n}(p, q ; x)=U_{n}(x)$ and $c_{n, k}(p, q)=c_{n, k}$. Let us define the generating function of the sequence $\left\{U_{n}(x)\right\}$ by

$$
f(x, t)=\sum_{n \geq 0} U_{n+1}(x) t^{n} .
$$

By (1), we get

$$
f(x, t)-1=\sum_{n \geq 1} U_{n+1}(x) t^{n}=t(x+p) \sum_{n \geq 1} U_{n}(x) t^{n-1}-q t^{2} \sum_{n \geq 1} U_{n-1}(x) t^{n-2} .
$$

The last sum can be written as $\sum_{n \geq 2} U_{n-2}(x) t^{n-2}$, since $U_{0}(x)=0$. It follows from this that

$$
f(x, t)-1=t(x+p) f(x, t)-q t^{2} f(x, t)
$$

Thus,

$$
\begin{equation*}
f(x, t)=\frac{1}{1-(x+p) t+q t^{2}} . \tag{10}
\end{equation*}
$$

We deduce from (10) that

$$
\begin{aligned}
\frac{k!t^{k}}{\left(1-(x+p) t+q t^{2}\right)^{k+1}} & =\frac{\partial^{k}}{\partial x^{k}} f(x, t)=\sum_{n \geq 0} U_{n+1}^{(k)}(x) t^{n} \\
& =\sum_{n \geq k} U_{n+1}^{(k)}(x) t^{n}=\sum_{n \geq 0} U_{n+k+1}^{(k)}(x) t^{n+k},
\end{aligned}
$$

since $U_{n+1}(x)$ is a polynomial of degree n.

Put $x=0$ in the last formula and recall that

$$
c_{n+k, k}=\frac{U_{n+k+1}^{(k)}(0)}{k!}
$$

by Taylor's formula, to obtain

$$
\begin{equation*}
\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}}=\sum_{n \geq 0} c_{n+k, k} t^{n} . \tag{11}
\end{equation*}
$$

Comparing this formula with (8), we see that

$$
c_{n+k, k}=d_{n, k}=\sum_{i+j=n}\binom{k+i}{k}\binom{k+j}{k} \alpha^{i} \beta^{j} .
$$

This concludes the proof.
Remarks: (i) If $k=0$, then (9) reduces to the classical formula (5).
(ii) Notice that (11) is the generating function of the $k^{\text {th }}$ column of the triangle of coefficients $c_{n, k}$. If $k=0$, we obtain in particular the well-known generating function of the generalized Fibonacci sequence, namely,

$$
\begin{equation*}
\frac{1}{1-p t+q t^{2}}=\sum_{n \geq 0} U_{n+1}(p, q ; 0) t^{n} . \tag{12}
\end{equation*}
$$

(iii) Using (6), one can obtain, by induction and with a little manipulation, another proof of Theorem 2.

Corollary 1: For every $n \geq 0$ and $k \geq 0$, we have

$$
c_{n, k}(-p, q)=(-1)^{n-k} c_{n, k}(p, q) .
$$

Proof: The result follows immediately from (9) and the fact that $(-\alpha)+(-\beta)=-p$ and $(-\alpha)(-\beta)=q$.

4. SOME PARTICULAR CASES

The general formula (9) can be simplified in two cases:
(i) Supposing that $p^{2}=4 q$, we have $\alpha=\beta$ and (8) becomes

$$
\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}}=\frac{1}{(1-\alpha t)^{2 k+2}}=\sum_{n \geq 0}\binom{n+2 k+1}{2 k+1} \alpha^{n} t^{n} .
$$

Hence, by (11), $c_{n, k}=c_{n, k}(p, q)$ takes the simpler form

$$
c_{n, k}=\binom{n+k+1}{2 k+1} \alpha^{n-k}=\binom{n+k+1}{2 k+1}(p / 2)^{n-k} .
$$

If $p=2$ and $q=1$ (Morgan-Voyce polynomials of the second kind), we obtain the known relation [8]

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n+k+1}{2 k+1} x^{n}
$$

(ii) Supposing that $p=0$, we have $\alpha=-\beta$ and (8) becomes

$$
\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}}=\frac{1}{\left(1+q t^{2}\right)^{k+1}}=\sum_{n \geq 0}(-1)^{n}\binom{n+k}{k} q^{n} t^{2 n} .
$$

Thus, by (11),

$$
c_{2 n+k, k}=(-1)^{n}\binom{n+k}{n} q^{n} \text { and } c_{2 n+k+1, k}=0 \text { for } n \geq 0 \text { and } k \geq 0 .
$$

This can be written

$$
c_{2 k+n, n}=(-1)^{k}\binom{k+n}{k} q^{k} \text { and } c_{2 k+n+1, n}=0
$$

Hence,

$$
c_{n, n-2 k}=(-1)^{k}\binom{n-k}{k} q^{k}, \text { for } n-2 k \geq 0 \text { and } c_{n, n-2 k-1}=0 \text {, for } n-2 k-1 \geq 0
$$

Now, by (2),

$$
U_{n+1}(0, q ; x)=\sum_{k=0}^{n} c_{n, k}(0, q) x^{k}=\sum_{k=0}^{n} c_{n, n-k}(0, q) x^{n-k}=\sum_{k=0}^{[n / 2]} c_{n, n-2 k}(0, q) x^{n-2 k}
$$

Thus, we get the simplified formula

$$
\begin{equation*}
U_{n+1}(0, q ; x)=\sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n-k}{k} q^{k} x^{n-2 k} \tag{13}
\end{equation*}
$$

If $p=0$ and $q=-1$, we obtain the known decomposition of Fibonacci polynomials

$$
F_{n+1}(x)=\sum_{k=0}^{[n / 2]}\binom{n-k}{k} x^{n-2 k},
$$

and if $p=0$ and $q=1$, we have the similar expression of Chebyschev polynomials of the second kind

$$
S_{n+1}(x)=U_{n+1}(0,1 ; 2 x)=\sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n-k}{k}(2 x)^{n-2 k} .
$$

5. DETERMINATION OF $\boldsymbol{c}_{n, k}(p, q)$ AS A POLYNOMIAL IN (p, q)

Theorem 3: For every $n \geq 0$ and $k \geq 0$, we have

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / 2]}(-1)^{r}\binom{n-r}{r}\binom{n-2 r}{k} q^{r} p^{n-2 r-k} . \tag{14}
\end{equation*}
$$

Proof: It is clear that $U_{n+1}(p, q ; x)=U_{n+1}(0, q ; x+p)$. Thus,

$$
c_{n, k}(p, q)=\frac{U_{n+1}^{(k)}(p, q ; 0)}{k!}=\frac{U_{n+1}^{(k)}(0, q ; p)}{k!} .
$$

By (13), one can express the last member as

$$
\begin{aligned}
& \sum_{r=0}^{[n / 2]}(-1)^{r}\binom{n-r}{r} \frac{(n-2 r) \cdots(n-2 r-k+1)}{k!} q^{r} p^{n-2 r-k} \\
& =\sum_{r=0}^{[(n-k) / 2]}(-1)^{r}\binom{n-r}{r}\binom{n-2 r}{k} q^{r} p^{n-2 r-k}
\end{aligned}
$$

This completes the proof of Theorem 3.
If $k=0$, we get the formula known by Lucas ([7], p. 207), namely,

$$
\begin{equation*}
U_{n+1}(p, q ; 0)=\sum_{r=0}^{[n / 2]}(-1)^{r}\binom{n-r}{r} q^{r} p^{n-2 r} . \tag{15}
\end{equation*}
$$

6. RISING DIAGONAL FUNCTIONS

Let us define the rising diagonal functions $\left\{\Psi_{n}(p, q ; x)\right\}$ of the sequence $\left\{c_{n, k}(p, q)\right\}$-see the table-by $\Psi_{0}(p, q ; x)=0$ and

$$
\begin{equation*}
\Psi_{n+1}(p, q ; x)=\sum_{k=0}^{n} c_{n-k, k}(p, q) x^{k}=\sum_{k=0}^{[n / 2]} c_{n-k, k}(p, q) x^{k}, \text { for } n \geq 0 . \tag{16}
\end{equation*}
$$

Notice that, from the table,

$$
\begin{equation*}
\Psi_{1}(p, q ; x)=1, \Psi_{2}(p, q ; x)=p, \text { and } \Psi_{3}(p, q ; x)=p^{2}-q+x . \tag{17}
\end{equation*}
$$

Theorem 4: For every $n \geq 2$, we have

$$
\begin{equation*}
\Psi_{n}(p, q ; x)=p \Psi_{n-1}(p, q ; x)+(x-q) \Psi_{n-2}(p, q ; x) \tag{18}
\end{equation*}
$$

Proof: For brevity, we put $\Psi_{n}(p, q ; x)=\Psi_{n}(x)$ and $c_{n, k}(p, q)=c_{n, k}$. By (17), the statement holds for $n=2$ and $n=3$. Supposing that (18) is true for $n \geq 3$, then we get, by (16),

$$
\Psi_{n+1}(x)=c_{n, 0}+\sum_{k=1}^{[n / 2]} c_{n-k, k} x^{k}
$$

Recall from (5) that $c_{n, 0}=U_{n+1}(0)=p c_{n-1,0}-q c_{n-2,0}$, and notice that $n-k \geq n-[n / 2] \geq 2$, since $n \geq 3$. By these remarks and (6), one can write

$$
\begin{aligned}
\Psi_{n+1}(x) & =p c_{n-1,0}-q c_{n-2,0}+\sum_{k=1}^{[n / 2]}\left(c_{n-1-k, k-1}+p c_{n-1-k, k}-q c_{n-2-k, k}\right) x^{k} \\
& =p \sum_{k=0}^{[n / 2]} c_{n-1-k, k} x^{k}-q \sum_{k=0}^{[n / 2]} c_{n-2-k, k} x^{k}+x \sum_{k=0}^{[n / 2]-1} c_{n-2-k, k} x^{k} \\
& =p \Psi_{n}(x)+(x-q) \Psi_{n-1}(x), \text { since }[n / 2]-1=[(n-2) / 2] .
\end{aligned}
$$

This concludes the proof.

Corollary 2: For every $n \geq 0$, we have

$$
\begin{equation*}
\Psi_{n+1}(p, q ; x)=\sum_{r=0}^{[n / 2]}\binom{n-r}{r} p^{n-2 r}(x-q)^{r} \tag{19}
\end{equation*}
$$

Proof: By Theorem 4, and since $\Psi_{0}(x)=0, \Psi_{1}(x)=1$, it is clear that

$$
\Psi_{n}(p, q ; x)=U_{n}(p, q-x ; 0),
$$

and the result follows by (15).
Let us examine some particular cases.
(i) Put $x=q$ in (19) to get, by (16),

$$
\sum_{k=0}^{[n / 2]} q^{k} c_{n-k, k}(p, q)=p^{n}
$$

If $p=1$ and $q=1$, we get a known identity on the coefficients of the Morgan-Voyce polynomial of the second kind B_{n}, first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely,

$$
\sum_{k=0}^{[n / 2]} c_{n-k, k}(2,1)=2^{n}
$$

(ii) Put $x=1$ in (19) to get, by (16),

$$
\sum_{k=0}^{[n / 2]} c_{n-k, k}(p, q)=\sum_{r=0}^{[n / 2]}\binom{n-r}{r} p^{n-2 r}(1-q)^{r},
$$

which is more general than the above result.
(iii) If $p=0$, then Corollary 2 implies by (16) that

$$
\sum_{k=0}^{n} c_{2 n-k, k}(0, q) x^{k}=(x-q)^{n}
$$

If $q=1$ (Chebyschev polynomials of the second kind), or $q=2$ (first Fermat polynomials), this identity was first noticed by Horadam [5] with slightly different notations.

7. THE ORTHOGONALITY OF THE SEQUENCE $\left\{\boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{p}, \boldsymbol{q} ; \boldsymbol{x})\right\}$

In this paragraph we shall suppose that $q>0$. Consider the sequence $\left\{R_{n}(p, q ; x)\right\}$ defined by

$$
\begin{equation*}
R_{n}(p, q ; x)=q^{(n-1) / 2} S_{n}\left(\frac{x+p}{2 \sqrt{q}}\right) \tag{20}
\end{equation*}
$$

where $S_{n}(x)$ is the $n^{\text {th }}$ Chebyschev polynomial of the second kind. Let us determine the recurrence satisfied by the sequence $\left\{R_{n}(p, q ; x)\right\}$. One can write

$$
R_{n}(p, q ; x)=q^{(n-1) / 2}\left[\left(\frac{x+p}{\sqrt{q}}\right) S_{n-1}\left(\frac{x+p}{2 \sqrt{q}}\right)-S_{n-2}\left(\frac{x+p}{2 \sqrt{q}}\right)\right]
$$

$$
\begin{aligned}
& =(x+p) 1^{(n-2) / 2} S_{n-1}\left(\frac{x+p}{2 \sqrt{q}}\right)-q q^{(n-3) / 2} S_{n-2}\left(\frac{x+p}{2 \sqrt{q}}\right) \\
& =(x+p) R_{n-1}(p, q ; x)-q R_{n-2}(p, q ; x) .
\end{aligned}
$$

Observe that the sequence $\left\{R_{n}(p, q ; x)\right\}$ satisfies the recurrence (1) with $R_{0}(p, q ; x)=0$ and $R_{1}(p, q ; x)=1$, so that

$$
\begin{equation*}
R_{n}(p, q ; x)=U_{n}(p, q ; x) . \tag{21}
\end{equation*}
$$

Recalling that the sequence $\left\{S_{n}(x)\right\}$ is orthogonal over $[-1,1]$ with respect to the weight $\sqrt{1-x^{2}}$, we deduce that the sequence $\left\{U_{n}(p, q ; x)\right\}$ is orthogonal over $[-p-2 \sqrt{q},-p+2 \sqrt{q}]$ with respect to the weight $w(x)=\sqrt{-x^{2}-2 p x-\Delta}$, where $\Delta=p^{2}-4 q$.

In fact, for $n \neq m$, we have

$$
\begin{aligned}
\int_{-p-2 \sqrt{q}}^{-p+2 \sqrt{q}} U_{n}(x) U_{m}(x) w(x) d x & =q^{((n+m) / 2)-1} \int_{-p-2 \sqrt{q}}^{-p+2 \sqrt{q}} S_{n}\left(\frac{x+p}{2 \sqrt{q}}\right) S_{m}\left(\frac{x+p}{2 \sqrt{q}}\right) w(x) d x \\
& =4 q^{(n+m) / 2} \int_{-1}^{+1} S_{n}(\omega) S_{m}(\omega) \sqrt{1-\omega^{2}} d \omega=0,
\end{aligned}
$$

where $\omega=\frac{x+p}{2 \sqrt{q}}$. In the case of the Morgan-Voyce polynomial of the second kind, $B_{n}(x)$, this orthogonality result was first given by Swamy [8].

If $\omega=\cos t(0<t<\pi)$, it is well known that $S_{n}(\omega)=\frac{\sin n t}{\sin t}$, Thus, by (20) and (21), we have

$$
U_{n}(p, q ;-p+2 \omega \sqrt{q})=q^{(n-1) / 2} S_{n}(\omega)=q^{(n-1) / 2} \frac{\sin n t}{\sin t} .
$$

From this, we see that the roots of $U_{n}(p, q ; x)$ are given by

$$
x_{k}=-p+2 \sqrt{q} \cos (k \pi / n), k=1, \ldots,(n-1) .
$$

For instance, the roots of the Morgan-Voyce polynomial of the second kind, $B_{n}(x)=$ $U_{n+1}(2,1 ; x)$, are (see [9])

$$
x_{k}=-2+2 \cos \left(\frac{k n}{n+1}\right)=-4 \sin ^{2}\left(\frac{k \pi}{2 n+2}\right), \quad k=1, \ldots,(n-1) .
$$

Under the hypothesis $q>0$, we deduce from the general expression for x_{k} that the generalized Fibonacci sequences $U_{n}(p, q ; 0)$ vanish if and only if there exists an integer $k(1 \leq k \leq n-1)$ such that $\cos (k \pi / n)=p / 2 \sqrt{q}$.

8. CONCLUDING REMARK

In a future paper, we shall investigate the sequence $\left\{V_{n}(p, q ; x)\right\}$ of polynomials, defined by

$$
V_{n}(p, q ; x)=(x+p) V_{n-1}(p, q ; x)-q V_{n-2}(p, q ; x), n \geq 2,
$$

with $V_{0}(p, q ; x)=2$ and $V_{1}(p, q ; x)=x+p$.

ACKNOWLEDGMENT

The author wishes to thank the referee for bringing to his attention Horadam's papers on polynomials. I appreciate, equally, his or her helpful comments for improving the paper.

REFERENCES

1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quarterly (to appear).
2. G. Ferri, M. Faccio, \& A. D'Amico. "Fibonacci Numbers and Ladder Network Impedance." The Fibonacci Quarterly 30.1 (1992):62-67.
3. G. Ferri, M. Faccio, \& A. D'Amico. "The DFF and DFFz Triangles and Their Mathematical Properties." Proceedings of the Fifth International Conferience on Fibonacci Numbers and Their Applications. (to appear).
4. A. F. Horadam \& Br. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.2 (1985):7-20.
5. A. F. Horadam. "Chebyschev and Fermat Polynomials for Diagonal Functions." The Fibonacci Quarterly 19.4 (1979):328-333.
6. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In Fibonacci Numbers and Their Applications 1:141-61. Ed. A. N. Philippou, G. E. Bergum, \& A. F. Horadam. Dordrecht: Kluwer, 1986.
7. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-220, 289-321.
8. M. N. S. Swamy. "Properties of the Polynomials Defined by Morgan-Voyce." The Fibonacci Quarterly 4.1 (1966):73-81.
9. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Quarterly 6.2 (1968):167-75.

AMS Classification Numbers: 11B39, 33C25 **

