A NOTE ON A GENERAL CLASS OF POLYNOMIALS

Richard André-Jeannin

IUT GEA, Route de Romain, 54400 Longwy, France (Submitted April 1993)

1. INTRODUCTION

We consider polynomials $\{U_n(p, q; x)\}$ such that

$$U_n(p,q; x) = (x+p)U_{n-1}(p,q; x) - qU_{n-2}(p,q; x), \ n \ge 2$$
(1)

with $U_0(p, q; x) = 0$ and $U_1(p, q; x) = 1$.

The parameters p and q are arbitrary real numbers (with $q \neq 0$), and we denote by α , β the numbers such that $\alpha + \beta = p$ and $\alpha\beta = q$.

We see by induction that there exists a sequence $\{c_{n,k}(p,q)\}_{\substack{n\geq 0\\k>0}}$ of numbers such that

$$U_{n+1}(p,q;x) = \sum_{k\geq 0} c_{n,k}(p,q) x^k, \qquad (2)$$

with

 $c_{n,k}(p,q) = 0$ if k > n and $c_{n,n}(p,q) = 1, n \ge 0$.

The first few terms of the sequence $\{U_n(p,q; x)\}$ are

$$\begin{cases} U_2(p,q; x) = p + x \\ U_3(p,q; x) = (p^2 - q) + 2px + x^2 \\ U_4(p,q; x) = (p^3 - 2pq) + (3p^2 - 2q)x + 3px^2 + x^3 \end{cases}$$

Particular cases of $U_n(p,q;x)$ are the Fibonacci polynomials $F_n(x)$, the Pell polynomials $P_n(x)$ [4], the first Fermat polynomials $\Phi_n(x)$ [5], the Morgan–Voyce polynomials of the second kind $B_n(x)$ ([3], [6], [8], [9]), and the Chebyschev polynomials of the second kind $S_n(x)$ given by

$$U_n(0, -1; x) = F_n(x),$$

$$U_n(0, -1; 2x) = P_n(x),$$

$$U_n(0, 2; x) = \Phi_n(x),$$

$$U_{n+1}(2, 1; x) = B_n(x),$$

$$U_n(0, 1; 2x) = S_n(x).$$

We have used S_n in place of the customary U_n since U_n has been used in a different way in the present paper. For particular values of the variable x, one can obtain some interesting sequences of numbers.

(i) The sequence $\{U_n(p,q; -p)\}$ satisfies the recurrence

$$U_n(p,q;-p) = -qU_{n-2}(p,q;-p), \ n \ge 2;$$

thus,

$$U_{2n}(p,q;-p) = 0$$
 and $U_{2n+1}(p,q;-p) = (-q)^n$.

1994]

By (2), these can also be written

$$\sum_{k=0}^{2n-1} (-1)^k p^k c_{2n-1,k}(p,q) = 0$$
(3)

and

$$\sum_{k=0}^{2n} (-1)^k p^k c_{2n,k}(p,q) = (-1)^n q^n.$$
(4)

(ii) It follows at once that the sequence $\{U_n(p, q; 0)\}$ is the generalized Fibonacci sequence defined by

$$U_{n}(p,q; 0) = pU_{n-1}(p,q; 0) - qU_{n-2}(p,q; 0),$$

with $U_0(p,q; 0) = 0$ and $U_1(p,q; 0) = 1$. Therefore,

$$U_{n+1}(p,q; 0) = \sum_{i+j=n} \alpha^{i} \beta^{j} = \begin{cases} \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} & \text{if } \alpha \neq \beta, \\ (n+1)\alpha^{n} & \text{if } \alpha = \beta. \end{cases}$$

By (2), notice that

$$c_{n,0}(p,q) = U_{n+1}(p,q; 0) = \sum_{i+j=n} \alpha^{i} \beta^{j}.$$
 (5)

More generally, our aim is to express the coefficient $c_{n,k}(p,q)$ as a polynomials in (α, β) and as a polynomial in (p,q).

2. THE TRIANGLE OF COEFFICIENTS

One can display the sequence $\{c_{n,k}(p,q)\}$ in a triangle, thus:

nk	0	1	2	3	
0	1	0	0	0	
1	р	1	0	0	
2	p^2-q	$2p$ $3p^2 - 2q$	1	0	
3	p^3-2pq	$3p^2 - 2q$	3 <i>p</i>	1	
÷					

Comparing the coefficients of x^k in the two members of (1), we see by (2) that, for $n \ge 2$ and $k \ge 1$,

$$c_{n,k}(p,q) = c_{n-1,k-1}(p,q) + pc_{n-1,k}(p,q) - qc_{n-2,k}(p,q)$$

= $c_{n-1,k-1} + \beta c_{n-1,k} + \alpha (c_{n-1,k} - \beta c_{n-2,k})$
= $c_{n-1,k-1} + \alpha c_{n-1,k} + \beta (c_{n-1,k} - \alpha c_{n-1,k}),$ (6)

where, for brevity, we put $c_{n,k}$ for $c_{n,k}(p,q)$. From this, one can easily obtain another recurrence relation.

446

NOV.

Theorem 1: For every $n \ge 1$ and $k \ge 1$, we have

$$c_{n,k} = \beta c_{n-1,k} + \sum_{i=0}^{n-1} \alpha^{n-1-i} c_{i,k-1}$$

$$= \alpha c_{n-1,k} + \sum_{i=0}^{n-1} \beta^{n-1-i} c_{i,k-1}.$$
(7)

Proof: In fact, (7) is clear by direct computation for $n \le 2$ (recall that $\alpha + \beta = p$). Supposing that the relation is true for $n \ge 2$, then we have by (6) that

$$c_{n+1,k} = \beta c_{n,k} + \alpha (c_{n,k} - \beta c_{n-1,k}) + c_{n,k-1}$$
$$= \beta c_{n,k} + \alpha \sum_{i=0}^{n-1} \alpha^{n-1-i} c_{i,k-1} + c_{n,k-1}$$
$$= \beta c_{n,k} + \sum_{i=0}^{n} \alpha^{n-i} c_{i,k-1}.$$

This concludes the proof, and the other formula can be proved in the same way.

Let us examine some particular cases.

(i) Fibonacci polynomials. In this case we have p = 0, q = -1, and $\alpha = -\beta = 1$. From this, (7) becomes

$$c_{n,k} = -c_{n-1,k} + \sum_{i=0}^{n-1} c_{i,k-1}$$
$$= c_{n-1,k} + \sum_{i=0}^{n-1} (-1)^{n-1-i} c_{i,k-1}.$$

(ii) Morgan-Voyce polynomials of the second kind. In this case, we have p = 2, q = 1, and $\alpha = \beta = 1$. Thus, (7) becomes

$$c_{n,k} = c_{n-1,k} + \sum_{i=0}^{n-1} c_{i,k-1},$$

which is the recursive definition of the DFFz triangle [2], known to be the triangle of coefficients of Morgan–Voyce polynomials ([1], [3]).

3. DETERMINATION OF $c_{n,k}(p,q)$ AS A POLYNOMIAL IN (α, β)

In our proof we shall need the following lemma.

Lemma: For every $k \ge 0$, we have

$$\frac{1}{(1-pt+qt^2)^{k+1}} = \sum_{n\geq 0} d_{n,k} t^n,$$
(8)

with

$$d_{n,k} = \sum_{i+j=n} \binom{k+i}{k} \binom{k+j}{k} \alpha^{i} \beta^{j}.$$

1994]

Proof: Recall that

$$\phi_r(t) = \frac{1}{(1-rt)^{k+1}} = \sum_{n \ge 0} {\binom{k+n}{k}} r^n t^n,$$

where r is a real or complex parameter and |rt| < 1. Thus, we have

$$\frac{1}{(1-pt+qt^2)^{k+1}} = \frac{1}{(1-\alpha t)^{k+1}(1-\beta t)^{k+1}}$$
$$= \sum_{n\geq 0} {\binom{k+n}{k}} \alpha^n t^n \cdot \sum_{n\geq 0} {\binom{k+n}{k}} \beta^n t^n$$
$$= \sum_{n\geq 0} d_{n,k} t^n,$$

where

$$d_{n,k} = \sum_{i+j=n} \binom{k+i}{k} \binom{k+j}{k} \alpha^{i} \beta^{j},$$

by application of Cauchy's rule for multiplying power series. Q.E.D.

Theorem 2: For every $n \ge 0$ and $k \ge 0$, we have

$$c_{n,k}(p,q) = \sum_{i+j=n-k} \binom{k+i}{k} \binom{k+j}{k} \alpha^i \beta^j, \qquad (9)$$

where we have used the convention $\sum_{i+j=s} a_{i,j} = 0$, if s < 0.

Proof: For brevity, we put $U_n(p, q; x) = U_n(x)$ and $c_{n,k}(p, q) = c_{n,k}$. Let us define the generating function of the sequence $\{U_n(x)\}$ by

$$f(x,t) = \sum_{n\geq 0} U_{n+1}(x)t^n$$

By (1), we get

$$f(x,t)-1 = \sum_{n\geq 1} U_{n+1}(x)t^n = t(x+p)\sum_{n\geq 1} U_n(x)t^{n-1} - qt^2\sum_{n\geq 1} U_{n-1}(x)t^{n-2}.$$

The last sum can be written as $\sum_{n\geq 2} U_{n-2}(x)t^{n-2}$, since $U_0(x) = 0$. It follows from this that

$$f(x,t)-1 = t(x+p)f(x,t)-qt^{2}f(x,t).$$

Thus,

$$f(x,t) = \frac{1}{1 - (x+p)t + qt^2}.$$
 (10)

We deduce from (10) that

$$\frac{k!t^{k}}{(1-(x+p)t+qt^{2})^{k+1}} = \frac{\partial^{k}}{\partial x^{k}}f(x,t) = \sum_{n\geq 0} U_{n+1}^{(k)}(x)t^{n}$$
$$= \sum_{n\geq k} U_{n+1}^{(k)}(x)t^{n} = \sum_{n\geq 0} U_{n+k+1}^{(k)}(x)t^{n+k},$$

since $U_{n+1}(x)$ is a polynomial of degree *n*.

NOV.

Put x = 0 in the last formula and recall that

$$c_{n+k,k} = \frac{U_{n+k+1}^{(k)}(0)}{k!},$$

by Taylor's formula, to obtain

$$\frac{1}{(1-pt+qt^2)^{k+1}} = \sum_{n\geq 0} c_{n+k,k} t^n \,. \tag{11}$$

Comparing this formula with (8), we see that

$$c_{n+k,k} = d_{n,k} = \sum_{i+j=n} \binom{k+i}{k} \binom{k+j}{k} \alpha^{i} \beta^{j}.$$

This concludes the proof.

Remarks: (i) If k = 0, then (9) reduces to the classical formula (5).

(ii) Notice that (11) is the generating function of the k^{th} column of the triangle of coefficients $c_{n,k}$. If k = 0, we obtain in particular the well-known generating function of the generalized Fibonacci sequence, namely,

$$\frac{1}{1 - pt + qt^2} = \sum_{n \ge 0} U_{n+1}(p, q; 0)t^n \,. \tag{12}$$

(iii) Using (6), one can obtain, by induction and with a little manipulation, another proof of Theorem 2.

Corollary 1: For every $n \ge 0$ and $k \ge 0$, we have

$$c_{n,k}(-p,q) = (-1)^{n-k} c_{n,k}(p,q)$$

Proof: The result follows immediately from (9) and the fact that $(-\alpha) + (-\beta) = -p$ and $(-\alpha)(-\beta) = q$.

4. SOME PARTICULAR CASES

The general formula (9) can be simplified in two cases:

(i) Supposing that $p^2 = 4q$, we have $\alpha = \beta$ and (8) becomes

$$\frac{1}{(1-pt+qt^2)^{k+1}} = \frac{1}{(1-\alpha t)^{2k+2}} = \sum_{n\geq 0} \binom{n+2k+1}{2k+1} \alpha^n t^n.$$

Hence, by (11), $c_{n,k} = c_{n,k}(p,q)$ takes the simpler form

$$c_{n,k} = \binom{n+k+1}{2k+1} \alpha^{n-k} = \binom{n+k+1}{2k+1} (p/2)^{n-k}.$$

If p = 2 and q = 1 (Morgan-Voyce polynomials of the second kind), we obtain the known relation [8]

1994]

$$B_n(x) = \sum_{k=0}^n \binom{n+k+1}{2k+1} x^n.$$

(ii) Supposing that p = 0, we have $\alpha = -\beta$ and (8) becomes

$$\frac{1}{(1-pt+qt^2)^{k+1}} = \frac{1}{(1+qt^2)^{k+1}} = \sum_{n\geq 0} (-1)^n \binom{n+k}{k} q^n t^{2n}.$$

Thus, by (11),

$$c_{2n+k,k} = (-1)^n \binom{n+k}{n} q^n$$
 and $c_{2n+k+1,k} = 0$ for $n \ge 0$ and $k \ge 0$.

This can be written

$$c_{2k+n,n} = (-1)^k \binom{k+n}{k} q^k$$
 and $c_{2k+n+1,n} = 0$.

Hence,

$$c_{n,n-2k} = (-1)^k \binom{n-k}{k} q^k$$
, for $n-2k \ge 0$ and $c_{n,n-2k-1} = 0$, for $n-2k-1 \ge 0$.

Now, by (2),

$$U_{n+1}(0,q; x) = \sum_{k=0}^{n} c_{n,k}(0,q) x^{k} = \sum_{k=0}^{n} c_{n,n-k}(0,q) x^{n-k} = \sum_{k=0}^{\lfloor n/2 \rfloor} c_{n,n-2k}(0,q) x^{n-2k}$$

Thus, we get the simplified formula

$$U_{n+1}(0,q; x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} q^k x^{n-2k}.$$
 (13)

If p = 0 and q = -1, we obtain the known decomposition of Fibonacci polynomials

$$F_{n+1}(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {\binom{n-k}{k}} x^{n-2k},$$

and if p = 0 and q = 1, we have the similar expression of Chebyschev polynomials of the second kind

$$S_{n+1}(x) = U_{n+1}(0, 1; 2x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n-k}{k} (2x)^{n-2k}.$$

5. DETERMINATION OF $c_{n,k}(p,q)$ AS A POLYNOMIAL IN (p,q)

Theorem 3: For every $n \ge 0$ and $k \ge 0$, we have

$$c_{n,k}(p,q) = \sum_{r=0}^{\left[(n-k)/2\right]} (-1)^r \binom{n-r}{r} \binom{n-2r}{k} q^r p^{n-2r-k}.$$
 (14)

Proof: It is clear that $U_{n+1}(p,q; x) = U_{n+1}(0,q; x+p)$. Thus,

$$c_{n,k}(p,q) = \frac{U_{n+1}^{(k)}(p,q;0)}{k!} = \frac{U_{n+1}^{(k)}(0,q;p)}{k!}.$$

NOV.

By (13), one can express the last member as

$$\sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r {\binom{n-r}{r}} \frac{(n-2r)\cdots(n-2r-k+1)}{k!} q^r p^{n-2r-k}$$
$$= \sum_{r=0}^{\lfloor (n-k)/2 \rfloor} (-1)^r {\binom{n-r}{r}} {\binom{n-2r}{k}} q^r p^{n-2r-k}$$

This completes the proof of Theorem 3.

If k = 0, we get the formula known by Lucas ([7], p. 207), namely,

$$U_{n+1}(p,q; 0) = \sum_{r=0}^{[n/2]} (-1)^r \binom{n-r}{r} q^r p^{n-2r}.$$
 (15)

6. RISING DIAGONAL FUNCTIONS

Let us define the rising diagonal functions $\{\Psi_n(p,q; x)\}$ of the sequence $\{c_{n,k}(p,q)\}$ —see the table—by $\Psi_0(p,q; x) = 0$ and

$$\Psi_{n+1}(p,q;x) = \sum_{k=0}^{n} c_{n-k,k}(p,q) x^{k} = \sum_{k=0}^{\lfloor n/2 \rfloor} c_{n-k,k}(p,q) x^{k}, \text{ for } n \ge 0.$$
(16)

Notice that, from the table,

$$\Psi_1(p,q;x) = 1, \ \Psi_2(p,q;x) = p, \ \text{and} \ \Psi_3(p,q;x) = p^2 - q + x.$$
 (17)

Theorem 4: For every $n \ge 2$, we have

$$\Psi_n(p,q;x) = p\Psi_{n-1}(p,q;x) + (x-q)\Psi_{n-2}(p,q;x).$$
(18)

Proof: For brevity, we put $\Psi_n(p,q; x) = \Psi_n(x)$ and $c_{n,k}(p,q) = c_{n,k}$. By (17), the statement holds for n = 2 and n = 3. Supposing that (18) is true for $n \ge 3$, then we get, by (16),

$$\Psi_{n+1}(x) = c_{n,0} + \sum_{k=1}^{[n/2]} c_{n-k,k} x^k.$$

Recall from (5) that $c_{n,0} = U_{n+1}(0) = pc_{n-1,0} - qc_{n-2,0}$, and notice that $n-k \ge n-\lfloor n/2 \rfloor \ge 2$, since $n \ge 3$. By these remarks and (6), one can write

$$\Psi_{n+1}(x) = pc_{n-1,0} - qc_{n-2,0} + \sum_{k=1}^{\lfloor n/2 \rfloor} (c_{n-1-k,k-1} + pc_{n-1-k,k} - qc_{n-2-k,k}) x^k$$
$$= p\sum_{k=0}^{\lfloor n/2 \rfloor} c_{n-1-k,k} x^k - q\sum_{k=0}^{\lfloor n/2 \rfloor} c_{n-2-k,k} x^k + x\sum_{k=0}^{\lfloor n/2 \rfloor - 1} c_{n-2-k,k} x^k$$
$$= p\Psi_n(x) + (x-q)\Psi_{n-1}(x), \text{ since } \lfloor n/2 \rfloor - 1 = \lfloor (n-2)/2 \rfloor.$$

This concludes the proof.

1994]

Corollary 2: For every $n \ge 0$, we have

$$\Psi_{n+1}(p,q;x) = \sum_{r=0}^{\lfloor n/2 \rfloor} {\binom{n-r}{r}} p^{n-2r} (x-q)^r.$$
⁽¹⁹⁾

Proof: By Theorem 4, and since $\Psi_0(x) = 0$, $\Psi_1(x) = 1$, it is clear that

$$\Psi_n(p,q; x) = U_n(p,q-x; 0),$$

and the result follows by (15).

Let us examine some particular cases.

(i) Put x = q in (19) to get, by (16),

$$\sum_{k=0}^{[n/2]} q^k c_{n-k,k}(p,q) = p^n.$$

If p = 1 and q = 1, we get a known identity on the coefficients of the Morgan–Voyce polynomial of the second kind B_n , first noticed by Ferri, Faccio and D'Amico ([2], [3]), namely,

$$\sum_{k=0}^{[n/2]} c_{n-k,k}(2,1) = 2^n$$

(ii) Put x = 1 in (19) to get, by (16),

$$\sum_{k=0}^{\lfloor n/2 \rfloor} c_{n-k,k}(p,q) = \sum_{r=0}^{\lfloor n/2 \rfloor} {\binom{n-r}{r}} p^{n-2r} (1-q)^r,$$

which is more general than the above result.

(iii) If p = 0, then Corollary 2 implies by (16) that

$$\sum_{k=0}^{n} c_{2n-k,k}(0,q) x^{k} = (x-q)^{n}$$

If q = 1 (Chebyschev polynomials of the second kind), or q = 2 (first Fermat polynomials), this identity was first noticed by Horadam [5] with slightly different notations.

7. THE ORTHOGONALITY OF THE SEQUENCE $\{U_n(p,q;x)\}$

In this paragraph we shall suppose that q > 0. Consider the sequence $\{R_n(p, q; x)\}$ defined by

$$R_n(p,q;x) = q^{(n-1)/2} S_n\left(\frac{x+p}{2\sqrt{q}}\right),$$
(20)

where $S_n(x)$ is the n^{th} Chebyschev polynomial of the second kind. Let us determine the recurrence satisfied by the sequence $\{R_n(p,q;x)\}$. One can write

$$R_{n}(p,q; x) = q^{(n-1)/2} \left[\left(\frac{x+p}{\sqrt{q}} \right) S_{n-1} \left(\frac{x+p}{2\sqrt{q}} \right) - S_{n-2} \left(\frac{x+p}{2\sqrt{q}} \right) \right]$$

NOV.

$$= (x+p)1^{(n-2)/2} S_{n-1}\left(\frac{x+p}{2\sqrt{q}}\right) - q q^{(n-3)/2} S_{n-2}\left(\frac{x+p}{2\sqrt{q}}\right)$$
$$= (x+p)R_{n-1}(p,q;x) - qR_{n-2}(p,q;x).$$

Observe that the sequence $\{R_n(p,q;x)\}$ satisfies the recurrence (1) with $R_0(p,q;x) = 0$ and $R_1(p,q;x) = 1$, so that

$$R_n(p,q; x) = U_n(p,q; x).$$
(21)

Recalling that the sequence $\{S_n(x)\}$ is orthogonal over [-1, 1] with respect to the weight $\sqrt{1-x^2}$, we deduce that the sequence $\{U_n(p, q; x)\}$ is orthogonal over $[-p-2\sqrt{q}, -p+2\sqrt{q}]$ with respect to the weight $w(x) = \sqrt{-x^2 - 2px - \Delta}$, where $\Delta = p^2 - 4q$.

In fact, for $n \neq m$, we have

$$\int_{-p-2\sqrt{q}}^{-p+2\sqrt{q}} U_n(x)U_m(x)w(x)\,dx = q^{((n+m)/2)-1} \int_{-p-2\sqrt{q}}^{-p+2\sqrt{q}} S_n\left(\frac{x+p}{2\sqrt{q}}\right) S_m\left(\frac{x+p}{2\sqrt{q}}\right) w(x)\,dx$$
$$= 4q^{(n+m)/2} \int_{-1}^{+1} S_n(\omega)S_m(\omega)\sqrt{1-\omega^2}\,d\omega = 0,$$

where $\omega = \frac{x+p}{2\sqrt{q}}$. In the case of the Morgan–Voyce polynomial of the second kind, $B_n(x)$, this orthogonality result was first given by Swamy [8].

If $\omega = \cos t$ ($0 < t < \pi$), it is well known that $S_n(\omega) = \frac{\sin nt}{\sin t}$, Thus, by (20) and (21), we have

$$U_n(p,q; -p+2\omega\sqrt{q}) = q^{(n-1)/2}S_n(\omega) = q^{(n-1)/2}\frac{\sin nt}{\sin t}.$$

From this, we see that the roots of $U_n(p, q; x)$ are given by

$$x_k = -p + 2\sqrt{q} \cos(k\pi / n), \ k = 1, ..., (n-1)$$

For instance, the roots of the Morgan-Voyce polynomial of the second kind, $B_n(x) = U_{n+1}(2, 1; x)$, are (see [9])

$$x_k = -2 + 2\cos\left(\frac{kn}{n+1}\right) = -4\sin^2\left(\frac{k\pi}{2n+2}\right), \quad k = 1, ..., (n-1).$$

Under the hypothesis q > 0, we deduce from the general expression for x_k that the generalized Fibonacci sequences $U_n(p,q; 0)$ vanish if and only if there exists an integer k $(1 \le k \le n-1)$ such that $\cos(k\pi/n) = p/2\sqrt{q}$.

8. CONCLUDING REMARK

In a future paper, we shall investigate the sequence $\{V_n(p,q; x)\}$ of polynomials, defined by

$$V_n(p,q;x) = (x+p)V_{n-1}(p,q;x) - qV_{n-2}(p,q;x), n \ge 2,$$

with $V_0(p, q; x) = 2$ and $V_1(p, q; x) = x + p$.

1994]

ACKNOWLEDGMENT

The author wishes to thank the referee for bringing to his attention Horadam's papers on polynomials. I appreciate, equally, his or her helpful comments for improving the paper.

REFERENCES

- 1. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." *The Fibonacci Quarterly* (to appear).
- 2. G. Ferri, M. Faccio, & A. D'Amico. "Fibonacci Numbers and Ladder Network Impedance." *The Fibonacci Quarterly* **30.1** (1992):62-67.
- 3. G. Ferri, M. Faccio, & A. D'Amico. "The DFF and DFFz Triangles and Their Mathematical Properties." *Proceedings of the Fifth International Conference on Fibonacci Numbers and Their Applications*. (to appear).
- 4. A. F. Horadam & Br. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.2 (1985):7-20.
- 5. A. F. Horadam. "Chebyschev and Fermat Polynomials for Diagonal Functions." *The Fibo-nacci Quarterly* **19.4** (1979):328-333.
- J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In *Fibonacci Numbers and Their Applications* 1:141-61. Ed. A. N. Philippou, G. E. Bergum, & A. F. Horadam. Dordrecht: Kluwer, 1986.
- 7. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-220, 289-321.
- 8. M. N. S. Swamy. "Properties of the Polynomials Defined by Morgan-Voyce." *The Fibo*nacci Quarterly **4.1** (1966):73-81.
- 9. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." *The Fibonacci Quarterly* 6.2 (1968):167-75.

AMS Classification Numbers: 11B39, 33C25
