Results (10) and (11) reveal that each number N, as it occurs for the first time in the ranges (12), is represented uniquely and minimally. For instance,

$$
-3=1 \cdot P_{-1}+2 \cdot P_{-2}+0 \cdot P_{-3}+0 \cdot P_{-4}+0 \cdot P_{-5}+\cdots
$$

has unique and minimal representation $1 \cdot P_{-1}+2 \cdot P_{-2}$. We conclude that $h \ngtr m$. Similarly, $h \nless m$. Therefore, $h=m$, and Case 1 and the Summary are true.

Combining all the preceding discussion, we argue that the validity of the Theorem has been justified.

See [2] for further relevant information and [1] for an analogous treatment of representations involving negatively subscripted Fibonacci numbers.

REFERENCES

1. M. W. Bunder. "Zeckendorf Representations Using Negative Fibonacci Numbers." The Fibonacci Quarterly 30.2 (1992):111-15.
2. A. F. Horadam. "Unique Minimal Representation of Integers by Negatively Subscripted Pell Numbers." The Fibonacci Quarterly 32.3 (1994):202-06.

AMS Classification Numbers: 11B37, 11A67

NEW EDITORIAL POLICIES

The Board of Directors of The Fibonacci Association during their last business meeting voted to incorporate the following two editorial policies effective January 1, 1995:

1. All articles submitted for publication in The Fibonacci Quarterly will be blind refereed.
2. In place of Assistant Editors, The Fibonacci Quarterly will change to utilization of an Editorial Board.
