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1. PMEL1MINAMES 

The polyomials p„(x, c) defined by 
[«/2j , .x 

/=0 n-A l J 
where [_-J denotes the greatest integer function and x is an indeterminate, are commonly referred 
to as Dickson polynomials (e.g., see [6]). These polynomials have been studied in the past years, 
both from the point of view of their theoretical properties [2], [6], and [14], and from that of their 
practical applications [7], [9], [10]. and [13]. In particular, their relevance to public-key crypto-
systems has been pointed out in [8], [11], [12], and [16]. As is shown, e.g., in [14], the coeffi-
cients of pn(x, c) are integers for any positive integer n and c GZ. It is also evident that 

pn(x,-\) = Vn(x\ (1.2) 

where Vn(x) = xVn_l{x) + Vn_2(x) [V0(x) = 2, Vx(x) = x] are the Lucas polynomials considered in 
[3] and [5]. In particular, we have 

P„Q,-i) = L„, (1.3) 

where Ln is the /2th Lucas number. 
In this paper, we consider the extended Dickson polynomials p„(x, c, U) defined in the next 

section. 
2. INTRODUCTION AND DEFINITIONS 

Let us define the extended Dickson polynomials p„(x9 c, U) as the polynomials obtainable by 
replacing the upper range indicator in the sum (1.1) by a positive integer U>\nl2J. This paper 
is essentially dedicated to the study of the case x = -c = l. 

By (1.1) we have 

A(i,-i,^^rw(co = i A f n 7 , 1 (*>o).. (2J) 
f^0n-A l J 

If [n12J < U < n-1, the sum (2.1) gives Ln as the binomial coefficient vanishes when [n12J4-1 < 
/ <w-1 . For example, if n = 5 (so U -2, 3, or 4), then T5(U) = L5 = 11. If U >n, the upper 
argument of the binomial coefficient becomes negative for i > n +1, and the (nonzero) value of the 
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binomial coefficient can be obtained by (2.6). For i = n, the argument of the sum (2.1) assumes 
the indeterminate form 0- n 10 which will be settled in the sequel. 

By (2.1) we can write 
T„(U) = L„+Hn(k) (k = U-n>0), (2.2) 

where 

Hn(k) = "f^4nJi) = Hn(0)+f^-(nTi) („>0). (2.3) 

The quantity H„(0) in (2.3) is clearly given by the expression 

#„(0) = £ - ^ ( y ) (»>0), (2.4) 

which has the above said indeterminate form. In order to remove this obstacle, we use the com-
binatorial identities 

h (h-m\ (h-m\Jh-m-\\ ( 2 5 ) 

h-m\ m ) V m J v m~^ 

(available in [12], pp. 64 and 1, respectively), and rewrite (2.4) as 

n-i\(n-l-i 
n) \n-\ 

(2.7) 

=o+(-iri^:J)=(-ir1 (»>o). 
For the sake of consistency, let us assume that the above result is valid also for n = 0, so 

H0(0)^(-\yl = -l. (2.8) 

On the basis of (2.3), (2.7), and (2.8), for given nonnegative integers n and k, let us define 

#„(*)=(-ir1 + 1 — ( V I (»• * * °). <2-9) 
where the usual convention that 

b 
2 / ( 0 = 0 for 6 < a (2.10) 
i=a 

has to be invoked for obtaining H0(0) = - 1 . 
The numbers #„(&) defined by (2.9) are the companions of the numbers 

GB(*)=zf"-/
1-0=(-i)-t(-i)'fn +

/
2- /1 (211> 

/=>A ' /=0 \ J J 
which have been thoroughly investigated in [4]. The numbers Gn{k) arise from the incorrect use 
of a combinatorial formula for generating the Fibonacci numbers Fn9 whereas the numbers Hn(k) 
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result from an analogous use of the combinatorial formula (2.1) which (under appropriate con-
straints on U) generates the Lucas numbers (compare (2.2) with [4, (1.7)]) and are the fruit of 
our mathematical curiosity. The principal aim of this paper is to give alternative expressions of 
the numbers Hn{k) (Section 3), to find connections between these numbers and their companions 
Gn(k), and to give a brief account of their properties (Sections 4 and 5). A glimpse of the appli-
cation of the above argument to the Dickson polynomials (1.2) is caught in Section 6, where the 
polynomials Hn(k, x) are considered. 

3, THE NUMBERS Hn(k) 

Letting i = n + jm (2.9) yields 

whence, by using the identity (2.6), we obtain the definition 

/f„(^)=(-iri-(-irt(-iy-(""/_+i2-/) <3-2) 

which can be rewritten as 

,„„ 7 + lV J ) j=0 

By using (2.3), (2.5), and (2.6), the following equivalent definitions can be obtained, the proof of 
which are left as an exercise to the interested reader: 

k 'fn-l + 2j\_(n-l + 2j Hn{k)=(-irz(-iy[("-1_+
1

2;)-(' J ;=0 

k-l /• , , , „ . \ k 

(3.4) 

=(-i)n+ii;(-iv('7+1/2-/')+(-i)"-iso(-i)/(""72'7') • (35) 

Definitions (3.4) and (3.5) show clearly that the numbers Hn(k) are integers. Observe that 
H0(Q) =-l results from (3.5) by invoking (2.10), and from (3.4) by assuming that 

{-m) = ° 0»£ 1, /r arbitrary) [12, p. 2]. (3.6) 

Some particular cases, beyond Hn(0) given by (2.7) and (2.8), are 

Hn(l) = (-iy(n-T), (3.7) 

Hn(2) = (-l)"-l(n2 +n + 2)/2, (3.8) 
and 

H0(k) = -l\/k, (3.9) 

which are readily obtainable by (3.2)-(3.5). The numbers H„(k) are shown in Table 1 for the 
first few values of n and k. 
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TABLE 1. The Numbers Hn(k) for 0 < n, k < 5 

k 
0 
1 
2 
3 
4 
5 

— • 

—; 
— 
—; 
—; 
- ] 

1 1 
I 0 
I 2 
I -3 
L 11 
I -31 

-1 
1 

-4 
10 

-32 
100 

1 
-2 

7 
-21 

69 
-228 

-1 
3 

-11 
37 

-128 
444 

1 
-4 
16 

-59 
216 

-785 

4. SOME IDENTITIES INVOLVING THE NUMBERS Hn(k) AND Gn(k) 

First of all, we give a relation between the numbers H„(k) and their companions Gn(k) [see 
(2.11)]. 

Proposition!: H„(k) = G^k) + G„+l(k-1) (n,k>0). 

Proof: For n, k > 1, the above identity readily follows from the definitions (2.11) and (3.5). 
For n and/or k = 0, let us use the expressions of G_„ (k) and G„ (-k) established in [4, §4]. 

Case 1: «>land& = 0. 
By [4, (4.1)], (2.11), and (2.7), we get 

G„-i(0) + G„+1(-1) = G„_,(0) + 0 = (-I)""1 = H„(0). 

Case 2: H = 0 a n d £ > l . 
By [4, (4.9)] and (3.9), we get 

G_i(k) + G1(k-l) = -[Fi + Gl(k-l)]+G1(k-l) = -l = H0(k). 

Case 3: n = k = 0. 
By [4, (4.1) and (4.8)] and (2.8), we get 

G ^ O H G . H ) = G_l(0) + 0 = -F1 = -1 - HQ(0). D 

Proposition 1 together with some properties of the numbers G„(k) found in [4] will play a crucial 
role in establishing several properties of the numbers Hn(k). A further connection between 
Hn(k) and G„(k) is stated in the following proposition. 

Proposition 2: H„ (k) = G„+2(k -2) - G„_2(k) (n, k>0). 

Proof: By using the recurrence [4, (3.1)], namely, 
G„+2(*-l) = G„+1(*) + G„(£), (4.1) 

we can write 

G„+2(k - 2) - Gn_2(k) = G„+l(k -1) + Gn{k -1) - G„_2(k) 
^G^ik-V + G^k-V-iG^k-V-G^ik)] 
= G„+1(k - \) + G„_l{k) = Hn(k) (by Proposition 1). • 
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Then, we establish a recurrence relation for the numbers H„(k). 

Propositions: H„+2(k-l) = H„+l(k)+H„(k) (k>\). 

Proof: Hn+1(k) + Hn(k) 

= G„(k) + G„+2(k -1) + G^ik) + G„+l(k -1) (by Proposition 1) 
= G„(k) + Gn+3(k - 2) - Gn+1(k -1) + Gn_x{k) + G„+l(k -1) [by (4.1)] 
= Gn+3(k - 2) + [G„(k) + G^k) - G„+1(* -1)] + G„+1(k -1). 

Observing that the expression within square brackets vanishes in virtue of (4.1), we can write 

Hn+l(k) + H„(k) = Gn+3(k - 2) + G n + # -1) = Hn+2(k -1) (by Proposition 1). D 

As a direct consequence of Proposition 3, we can state the following proposition, the proof of 
which is omitted because of its triviality. 

s+2h-l h 
Proposition 4: YdH„(k) = J]H2n+s(k-l) (k>l). 

n=s «=1 

Also, the curious identity 

H„(n)-H„(n-l) = -^n
2-1^ (»>1) [so^1(l)-JffI(0) = - l ] (4.2) 

can be readily proved. 

Proof of (4.2): By (3.3), we Immediately obtain the recurrence relation 

^ ( ^ + i ) = ^ w + ( - i r ^ ^ + 1 / 2 * ] . (4.3) 

Replace k by n -1 in (4.3) and use [12, (iii), p. 3] to obtain (4.2). D 

Let us conclude this section by proving a noteworthy property of the numbers Hn(h). 

Hn+2h(k-h) ifk>h, 
0 if k<h. 

Propositions: R„(h,k)^Hf\H^(k): 

Proof: Use Proposition 1 to write 

K(.h, k)=i{^jG„.M(k)+fi^yn,M(k -1), 
whence 

Rn(h,k) = Gn_l+2h(k-h) + Gn+l+2h(k-l-h) (by [4, Proposition 3]) 

f Hn+2h (k-h) i£k>h (by Proposition 1) 
= [0 if k <h (since Gn{-k) = 0 V n, [4, (4.1)]). D 

Remark: The proof of Proposition 5 in the case k < h can also be obtained by using double 
induction (on k and rri) to prove that 
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kf(k+
i
m)Hn+i(k) = 0 if /»>l. (4.4) 

This alternative and more direct proof is not difficult but it is rather lengthy and tedious, so it is 
omitted to save space. 

5. SOME SIMPLE CONGRUENCE PROPERTIES OF Hn(k) 

In this section we are concerned with some aspects of the parity of Hn(k), and with a 
congruence property of these numbers that is valid for all prime values of the subscript n. 

Proposition 6: Hn(k) = G„(k) (mod2). 

Proof: By Proposition 1 and (4.1), we can write 

H„(k) = G„_l(k) + Gn+l(k-l) = G„.l(k) + Gn(k) + Gn_l(k) 
= G^ + lG^k) = G„(k) (mod2). D 

The general solution of the problem of establishing the parity of Gn{k) [and hence that of 
Hn(k)] seems to be rather difficult. On the basis of some partial results obtained in [4, §3.1], we 
show the solution for the particular cases n = 3 and 2h. Namely, we have 

/f3(A:)iseveniffi = 2/ 2-3 (h>2) (5.1) 
and 

Hr (k) is odd iff 22h+n~2 -2n <k<22h+n~l -2" -1 (n>0; h> 1). (5.2) 

Proposition 7: If/? is a prime and m is a nonnegative integer, then 
m 

(i) Hp{mp)^{-\yCj (mod/?), 

where C; = 7̂ 1 f2/) is the 7th Catalan number, and 

(ii) Hp(k) = Hp(mp) (mod/?) if mp + l<k <(m + l)p-l. 

Proof of Part (i): For n = /?, consider the absolute value of the generic addend of the sum in 
(3.2), namely, 

^{P-I^j) = Ap{j) 0 = 1,2,...,*). (5.3) 

By virtue of the integrality of Hn{k) [see Definition (3.4) or (3.5)] and the replacement of & by 
k -1 in the recurrence (4.3), it is readily seen that A (J) is an integer. If j ' ^ 0 (mod /?), this 
quantity is clearly divisible hyp. If p > 2, by (3.2) we can write 

Hp{mp) = 1+ 2(-l)<Ap(i) •= l + f)(-l)* ±[P-£_\JP) = 
;=1 ;=1 JP\ Jr J 

i=0 (mod p) 
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whence, by using Lucas' Theorem (e.g., see [1, Theorem 1.1]), we obtain 

Hp(mp) . l + S ( - i y )[f!^ = 1 + Z ( - i y J ^ j ) = tyyCj (modp). 

When p = 2, we have 

fl2(2w)s-l + £ c / (mod2). (5.5) 

Since -1 = 1 (mod 2), the congruence (5.5) is clearly equivalent to (i). 

Proof of Part (ii): For mp + l<k<(m + l)p-l [i.e., for k # 0 (mod /?)], rewrite (3.2) as 

^(Ar) = ( - i r 1 - ( - l ) ^ ( - l ) ^ ? 0 ) - ( - l ) " S C - ^ ^ C / ) - (5-6) 
/ = ! j=mp+l 

By (5.6), Proposition 7(i), and since Ap(j) = 0 (mod p) whenever j^O (mod p), we get the 
congruence 

m 

y=o 

Particular instances of Proposition 7 are: 

Hp(k) = l(modp) if 0 < A: < /?-1 , (5.7) 

# p ( p ) S 0 (mod/0, (5-8) 
Hp(2p) = 2(modp), (5.9) 

^ ( 3 / » ) S - 3 ( m o d p ) , (5.10) 
Hp(4p)^U(modp), (5.11) 

and 
^ ( 5 / 7 ) ^ - 3 1 (mod p). (5.12) 

Proof of (5.7): Put w = 0 in Proposition 7(ii), thus getting the congruence Hp{k) = Hp(0) 
(modp), ifl<k<p-l. Since Hp(0)= 1 (modp)\f p (p = 2 inclusive), the above congruence 
clearly can be rewritten as (5.7). D 

6. THE POLYNOMIALS Hn(k, x) 

Let us consider the special Dickson polynomials p„(x,-l) = Vn(x) [see (1.2)]. Paralleling 
the argument of Section 2 leads us to define the polynomials [cf (3.2)] 

H„(k,x) = L*> 
n-\ ^rm-j. (x*0), (6.1) 
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where x is a nonzero indeterminate. These polynomials are the companions of the polynomials 

Gn(k,x) = £££( - iy ( n + j 2 j )± (x*0), (6.2) 

considered in [4, §5]. By using the identity (2.5), it can be readily proved that 
H„(k, x) = G^k, x) + Gn+l(k - l,x). (6.3) 

Observe that identity (6.3) generalizes Proposition 1. 
We believe that the polynomials Hn(k, x) are worthy of a deep investigation. Nevertheless, 

in this paper we confine ourselves to making nothing but a couple of observations on them. 

Observation 1 [on the integrality of Hn(k,x)] 

Hn(k, x) is evidently an integer whenever x equals the reciprocal of an integer (say, x = l/h). 
This fact does not exclude the existence of irrational (or complex) values of x for which Hn(k, x) 
is an integer. For example, if x equals any of the roots of the third-degree equation hx3 - x2 + 
1 = 0, then /^( l , x) = h. Apart from the trivial case 

H0(k,x) = -l\/kmdx, (6.4) 

the problem of the existence of rational values of x ̂  \lh such that, for particular values of n and 
k, Hn(k, x) in an integer in an open problem. 

Observation 2 [on a limit concerning Hn(k, x)] 

Consider the limit 

limHn(k,x)d=Hn(oo,x) 

X' 

7 7 - 1 ' + i<-» 'r / - + . 2^ 
(6.5) 

(x*0) [by (6.1)]. 

The results presented in the sequel can be readily deduced from the analogous results on 
G„(k, x) established in [4, §5]. First, observe that by (6.1) we can write 

H„(™,-\x\) = (-l)"H„(«>,\x\), (6.6) 

so, for the sake of brevity, we shall consider only positive values of x. Then, let us state the fol-
lowing two propositions concerning a closed-form expression and a recurrence relation for 
Hn(°o, x), respectively. 

Proposition 8: If x > 2, then Hn(oo9 x) = - , where A = Vx2+4. 

Proof: By (6.3) we have 

# „ K x) - G ^ K x) + Gw+1(oo, x), (6.7) 

so that, by [4, (5.11)], namely, 
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G " K * ) = ^ F (x>2) (68) 

(although the above quantity unfortunately has been denoted In [4] by the symbol Hn(x), it is 
only marginally related to the quantities denoted by Hn(k) andHn(k,x) in this paper), we can 
write 

H„(QO, x) = - f-— + - f-—, 

whence, after some simple manipulations, we obtain the desired result, 

#n(a>,x) = - ( ^ — J = -AG„(oo,*). 

We draw attention to the fact that, for x<2 , the series (6.5) diverges (see (6.7) and [4, (5.7)]), 
whereas nothing can be said when x = 2, although computer experiments suggest the conjecture 
if„(oo? 2) = - (1 - J2)n. Observe that 1 - 4 l is one of the roots of the characteristic equation for 
the Pell recurrence relation. • 

We point out that, since 

- 1 < - <0 (0<x<oo), (6.9) 

there do not exist real values of x for which Hn(oo, x) is an integer. 

Proposition 9: The numbers Hn(c®, x) obey the second-order recurrence relation 

Hn(«>,x) = xHn_l(«>,x) + Hlh.2(cD,x) (»>2) (6.10) 

with initial conditions 

H0(?o9x) = -l and ^(QO,JC) = ( A - X ) / 2 . (6.10) 

Proof: The proof can be obtained readily by (6.7), [4, Proposition 10], and Proposition 8. • 

Let us conclude Observation 2 and the paper by showing the set of all rational values r of x 
for which Hn{oo,r) is a rational number. On the basis of the results established In [4, §5.1], we 
see that this set can be generated by the formula 

U2 -V2 

r = - — , (6.11) 
UV 

where [/and V range over the set of all positive integers and are subject to the condition 
C/>(1 + V2)F. (6.12) 

The fulfillment of inequality (6.12) is necessary to satisfy the inequality r>2 which, In turn, Is 
required for the convergence of the series (6.5). It can be proved readily that the condition 
g.c.d.(C/, V) = l must be Imposed to obtain all distinct values.of r. 
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