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1. INTRODUCTION 

We consider the following stochastic process: Assume that a "player" is hit at any time x with 
probability/?. However, he dies only after two consecutive hits. We might code this process by 0 
and 1, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described 
by 

{0,10}*-11. 

The notation {0,10}* denotes arbitrary sequences consisting of the blocks 0 and 10, the block 11 
are the fatal hits. Notice that {0,10}* are exactly the admissible blocks in the Fibonacci expansion 
of integers (Zeckendorf expansion, cf. [13]). Accordingly, the generating function 

1
 p z , (1.D 

\-qz- pqz 
has as the coefficient of zx the probability P{X = x} that the lifetime X of a player is exactly x. 
The generating function (1.1) is known in the context of the Fibonacci distribution or geometric 
distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12]. 

Here, we are interested in n (independent) players subject to this game and ask when (in the 
sense of a mean value) the last player dies. 

Without the "Fibonacci" restriction, i.e., the maximum of n (independent) geometric random 
variables, this problem has been studied previously and has some applications. (Compare [5], 
[11]-) 

We have obviously 
P{max{X1,...,Xn}<x} = (P{X<x})". (1.2) 

The generating function of P{X > x} is given by 
l + pz 

\-qz- pqz2 

We now factor the denominator of this function to obtain 

l-qz- pqz2 = (1 - az)(\ - bz) 
with 

q + tf+Apq ^ b = q-tf+4pq 
2 2 
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Performing the partial fraction decomposition and extracting coefficients yields 

¥>{X>x} = l (ax(a+p)-b*(b+p)). 
ylq2+4pq 

Using (1.2) we obtain the expectation for the maximum lifetime of n players 

Ew = Emax{X1;...,X„} = X 

By the binomial theorem we obtain 

x>0 

( ( i Y ^ 
H 1- / 2 (ax(a + p)-bx(b + p)) (1.3) 

E„ = i(-ir{l]L(Aa'-Binm; (1.4) 
where we use the notation 

A= " + p = , Ql and B—^P-
^q2+4pq q,Jq2+4pq ^jq2+4pq qjq2+4pq 

For example, in the symmetric case p = q = y, we have a = ̂ jl,b = ^=^-, J4 = 5+
1
3Q ? 5 = 5~1

3Q . 
We will find that E„ ~ log1/fl n and refer for the (technical) proof and a more precise statement 

to the next section. 

2. ASYMPTOTIC ANALYSIS 

In (1.4) we found the expression 

EB = I(-1)B-1fcV<w>- (21) 

containing the function 
/ (z ) = X ( ^ * " ^ * T for Mz > 0. 

For an expression of that type we can write a complex contour integral 

2^i J e z (z - l ) - - - ( z -w) 

where C is a positively oriented Jordan curve encircling the points 1, 2, ..., w (and no other integer 
points); this can easily be checked by residue calculus. 

We will use Rice's method to obtain an asymptotic expansion for E„. For this we refer, e.g., 
to [2] and [6]. This method is based on a deformation of the contour of integration. For this 
purpose we need an analytic continuation of the function / to a region containing a half-plane 
dtz > -s for s > 0 (we actually give an analytic continuation to the whole complex plane). 

Using the notation C = B IA andd = b/a (observe that \C\< 1 and \d\< 1) we obtain 
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/(z) = A'ZcTQ-Cd'Y = ^ £ a » £ ( - l ) < r t q f 
x>0 x>0 £>0 

= <£(-l)«c(*V(aW«)* = A^(i)t^ 
(2.3) 

zjt 
£>0' 

where the reversion of the order of summation was justified because of the absolute convergence 
of the sum for dtz>0. The sum in the last line gives a valid expression for f(z) for every 
complex number z which is not a solution of any of the equations l-azd£ = 0. In the points 
ze, x~~^ T^p"+1^ w^h ^ = 0,1,... and x e Z, there are simple poles with residue 

U J loga • 
43z 

fe B-

The Contours of Integration 

In order to be able to deform the contour of integration, we need an estimate for f(z) along 
the vertical line dtz = -u. For this purpose, we write 

/ ( * ) - X^v^o-ofy-i) 
and observe the inequality |(1 - Cdxf -1|< min(2, \z\Cdx). This yields 

Az 

m- \-az 

( 
<A~U 

\ 

^0<x<log|z| x>log|z| y 
(2.4) 

for | J|<aM < 1 and a = -wloga. 
We are now ready to start the deformation of the contour of integration: we take C as the 

new contour and write 
c 

Q) 
1 

2m 
i 

1m 

(-!)"«! 
z(z -1) • • • (z - n) 
r 

CD 

/(*)<& 

, n , T/(*)<& - Z ReS , n ' zf(z)> 
, z(z- l) - (z-w) z=*< z(z- l)---(z-») 

(2.5) 
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Notice that there is a second-order pole at 0. Computation of residues yields (with Hn = l+y + 

• • • + * ) 

R e S tVLHl f(z) = -L-H + ! 2 § i i _ i 
z=«z(z-\)-(z-n)nZ) loga " + l o g a 2 ' 

Res H)"" ' f(z) = ^ " ! ^ - H for^O, 
z=xx z(z -1) • • • (z -ri) Xx

 Joga r(#i +1 - #, ) 

where ^ = i ^ = z05jc. 
Shifting the upper, the lower, and the right part of C (cf. the figure) to infinity and observing 

that the integrals over these parts of the contour vanish then yields 

E = * H
 log^ | 1 V ^ ' n\T(\-Xx) 

" log! " loga 2 A^logalX/i + l-*,) 
-M+/00 

L I ( - » • • • • / W A 

(2-7) 

2^7 J z (z - l ) -(z-w) 
- M - / 0 0 

We now use the well-known asymptotic expansions 

H„ = logn + y + 0\-\ and —-—— - = nXx\l + 0 
KnJJ 

(by Stirling's formula) to formulate our main result. 

Theorem 1: The expected maximal lifetime Ew of n independent players each of which has the 
Fibonacci distribution (or geometric distribution of order 2) fulfills, for n —> oo? 

E H = l o g 1 / a » - r | l o g ^ + l - ^ ( l o g 1 / a » ) + 6>(»-"X (2.8) 
loga 2 

for 0<w<min(l,-^J-), and <p denotes a continuous periodic function of period 1 and mean 0 
given by the Fourier expansion 

no=r- I A'-n-xy*"=-!- x rc-^y^'-^- ">, (2.9) 
xeZ\{0} 

which is rapidly convergent due to the exponential decay of the T -function along vertical lines. 
The remainder term is obtained by a trivial estimate of the integral and the (uniform) 0-terms in 
Stirling's formula. 

3. EXTENSIONS 

Here, we briefly sketch the more general case where k consecutive hits are necessary to kill a 
player. In this case, the probability P(X = x) was derived by Philippou and Muwafi [9] in terms 
of multinomial coefficients. As described in the introduction, there is a bijection to the sequences 

{0,10,110,..., l^OJ-l*, 

which yield the probability generating function 
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pkzk _ pkz\\-pz) 
\-qz-pqz1 pk~lqzk l-z + qpkzk+1 K U 

for the lifetime of a player (cf. [1, pp. 299fFJ, [3, p. 428], [7, p. 207], [8]). Likewise, the generat-
ing function of P{X > x} is given by 

, l~PZ
kk+l- (3.2) 

Again we factor the polynomial in the denominator 

l-qz-pqz2 pk~lqzk = (1 - az){\ - a2z) • • • (1 - akz) 

with |a |>|a21 > • • • > \ak \ (a > 0). Then we have, by partial fraction decomposition and extracting 
coefficients, 

P{X >x} = Aax + A2ax
2 + • • • + Aka\ (3.3) 

with A = qmc+n£lk) a nd similar expressions for A^,..., Ak. 
For the expectation of the maximal lifetime of n players, we obtain 

E 

with 
Wit = Emax{^,..., X„) = Z H r ' f c W 

m=l V J 

g(z) = X(Acce + - + Akae
kY for 9iz > 0. 

£>0 

For the purpose of analytic continuation of g, we consider g(z)-j^ and proceed as in (2.4) to 
obtain the continuation and a polynomial estimate for g(z) along some vertical line 9lz = -s for 
sufficiently small s > 0. 

We are now ready to perform similar calculations as in Section 2. Thus, we obtain 

Theorem 2: The expected maximal lifetime E„tk ofn players each of which has the geometric 
distribution of order k satisfies 

log a 2 

for 0 < s < min(l, °^a£ ) and a continuous periodic function y/ of period 1 and mean 0 whose 
Fourier expansion is given by 

¥(t) = -±- zAz.T(rXy* = :J- <£T(rXy>«i>-**u.*> 
l°g «*<=»{()} togax«z\{o> 

By bootstrapping we find that, for k -> oo, 

a~l-<2p/c + — and ,4~l + % / + ---. 
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