THE FIBONACCI KILLER*

Peter J. Grabner
Department of Mathematics, Technical University of Graz, Austria
\section*{Helmut Prodinger}
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria (Submitted March 1993)

1. INTRODUCTION

We consider the following stochastic process: Assume that a "player" is hit at any time x with probability p. However, he dies only after two consecutive hits. We might code this process by 0 and $\mathbf{1}$, marking a hit, e.g., by a "1". Then the sequences associated with a player can be described by

$$
\{0,10\}^{*} \cdot 11
$$

The notation $\{\mathbf{0}, \mathbf{1 0}\}^{*}$ denotes arbitrary sequences consisting of the blocks $\mathbf{0}$ and $\mathbf{1 0}$, the block $\mathbf{1 1}$ are the fatal hits. Notice that $\{\mathbf{0}, \mathbf{1 0}\}^{*}$ are exactly the admissible blocks in the Fibonacci expansion of integers (Zeckendorf expansion, cf. [13]). Accordingly, the generating function

$$
\begin{equation*}
\frac{p^{2} z^{2}}{1-q z-p q z^{2}} \tag{1.1}
\end{equation*}
$$

has as the coefficient of z^{x} the probability $\mathbb{P}\{X=x\}$ that the lifetime X of a player is exactly x. The generating function (1.1) is known in the context of the Fibonacci distribution or geometric distribution of order 2, cf. [1], [3], [4], [7], [8], [10], [12].

Here, we are interested in n (independent) players subject to this game and ask when (in the sense of a mean value) the last player dies.

Without the "Fibonacci" restriction, i.e., the maximum of n (independent) geometric random variables, this problem has been studied previously and has some applications. (Compare [5], [11].)

We have obviously

$$
\begin{equation*}
\mathbb{P}\left\{\max \left\{X_{1}, \ldots, X_{n}\right\} \leq x\right\}=(\mathbb{P}\{X \leq x\})^{n} . \tag{1.2}
\end{equation*}
$$

The generating function of $\mathbb{P}\{X>x\}$ is given by

$$
\frac{1+p z}{1-q z-p q z^{2}}
$$

We now factor the denominator of this function to obtain

$$
1-q z-p q z^{2}=(1-a z)(1-b z)
$$

with

$$
a=\frac{q+\sqrt{q^{2}+4 p q}}{2} \text { and } b=\frac{q-\sqrt{q^{2}+4 p q}}{2} .
$$

[^0]Performing the partial fraction decomposition and extracting coefficients yields

$$
\mathbb{P}\{X>x\}=\frac{1}{\sqrt{q^{2}+4 p q}}\left(a^{x}(a+p)-b^{x}(b+p)\right)
$$

Using (1.2) we obtain the expectation for the maximum lifetime of n players:

$$
\begin{equation*}
\mathbb{E}_{n}=\mathbb{E} \max \left\{X_{1}, \ldots, X_{n}\right\}=\sum_{x \geq 0}\left(1-\left(1-\frac{1}{\sqrt{q^{2}+4 p q}}\left(a^{x}(a+p)-b^{x}(b+p)\right)\right)^{n}\right) \tag{1.3}
\end{equation*}
$$

By the binomial theorem we obtain

$$
\begin{equation*}
\mathbb{E}_{n}=\sum_{m=1}^{n}(-1)^{m-1}\binom{n}{m} \sum_{x \geq 0}\left(A a^{x}-B b^{x}\right)^{m} \tag{1.4}
\end{equation*}
$$

where we use the notation

$$
A=\frac{a+p}{\sqrt{q^{2}+4 p q}}=\frac{a^{2}}{q \sqrt{q^{2}+4 p q}} \quad \text { and } B=\frac{b+p}{\sqrt{q^{2}+4 p q}}=\frac{b^{2}}{q \sqrt{q^{2}+4 p q}}
$$

For example, in the symmetric case $p=q=\frac{1}{2}$, we have $a=\frac{1+\sqrt{5}}{4}, b=\frac{1-\sqrt{5}}{4}, A=\frac{5+3 \sqrt{5}}{10}, B=\frac{5-3 \sqrt{5}}{10}$.
We will find that $\mathbb{E}_{n} \sim \log _{1 / a} n$ and refer for the (technical) proof and a more precise statement to the next section.

2. ASYMPTOTIC ANALYSIS

In (1.4) we found the expression

$$
\begin{equation*}
\mathbb{E}_{n}=\sum_{m=1}^{n}(-1)^{m-1}\binom{n}{m} f(m) \tag{2.1}
\end{equation*}
$$

containing the function

$$
f(z)=\sum_{x \geq 0}\left(A a^{x}-B b^{x}\right)^{z} \text { for } \mathfrak{R z}>0
$$

For an expression of that type we can write a complex contour integral

$$
\begin{equation*}
\mathbb{E}_{n}=\frac{1}{2 \pi i} \oint_{e} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z) d z \tag{2.2}
\end{equation*}
$$

where \mathcal{C} is a positively oriented Jordan curve encircling the points $1,2, \ldots, n$ (and no other integer points); this can easily be checked by residue calculus.

We will use Rice's method to obtain an asymptotic expansion for \mathbb{E}_{n}. For this we refer, e.g., to [2] and [6]. This method is based on a deformation of the contour of integration. For this purpose we need an analytic continuation of the function f to a region containing a half-plane $\mathfrak{R z}>-\varepsilon$ for $\varepsilon>0$ (we actually give an analytic continuation to the whole complex plane).

Using the notation $C=B / A$ and $d=b / a$ (observe that $|C|<1$ and $|d|<1$) we obtain

$$
\begin{align*}
f(z) & =A^{z} \sum_{x \geq 0} a^{x z}\left(1-C d^{x}\right)^{z}=A^{z} \sum_{x \geq 0} a^{x z} \sum_{\ell \geq 0}(-1)^{\ell} C^{\ell} d^{x \ell}\binom{z}{\ell} \\
& =A^{z} \sum_{\ell \geq 0}(-1)^{\ell} C^{\ell}\binom{z}{\ell}_{x \geq 0}\left(a^{z} d^{\ell}\right)^{x}=A^{z} \sum_{\ell \geq 0}\binom{z}{\ell} \frac{(-1)^{\ell} C^{\ell}}{1-a^{z} d^{\ell}} \tag{2.3}
\end{align*}
$$

where the reversion of the order of summation was justified because of the absolute convergence of the sum for $\mathfrak{R z > 0}$. The sum in the last line gives a valid expression for $f(z)$ for every complex number z which is not a solution of any of the equations $1-a^{z} d^{\ell}=0$. In the points $z_{\ell, x}=-\ell \frac{\log d}{\log a}+\frac{2 x \pi i}{\log a}$ with $\ell=0,1, \ldots$ and $x \in \mathbb{Z}$, there are simple poles with residue

$$
A^{z_{\ell, x}}\binom{z_{\ell, x}}{\ell} \frac{(-1)^{\ell-1} C^{\ell}}{\log a} .
$$

The Contours of Integration
In order to be able to deform the contour of integration, we need an estimate for $f(z)$ along the vertical line $\mathfrak{R z}=-u$. For this purpose, we write

$$
f(z)-\frac{A^{z}}{1-a^{z}}=\sum_{x \geq 0} A^{z} a^{x z}\left(\left(1-C d^{x}\right)^{z}-1\right)
$$

and observe the inequality $\left|\left(1-C d^{x}\right)^{z}-1\right| \leq \min \left(2,|z| C d^{x}\right)$. This yields

$$
\begin{equation*}
\left|f(z)-\frac{A^{z}}{1-a^{z}}\right| \leq A^{-u}\left(\sum_{0 \leq x \leq \log z| |} 2|a|^{-x u}+|z| \sum_{x>\log |z|} a^{-x u} C d^{x}\right) \ll|z|^{\alpha} \tag{2.4}
\end{equation*}
$$

for $|d|<a^{u}<1$ and $\alpha=-u \log a$.
We are now ready to start the deformation of the contour of integration: we take C^{\prime} as the new contour and write

$$
\begin{align*}
& \frac{1}{2 \pi i} \oint_{C} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z) d z \tag{2.5}\\
& =\frac{1}{2 \pi i} \oint_{C^{\prime}} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z) d z-\sum \operatorname{Res}_{z=z_{i}} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z),
\end{align*}
$$

Notice that there is a second-order pole at 0 . Computation of residues yields (with $H_{n}=1+\frac{1}{2}+$ $\cdots+\frac{1}{n}$)

$$
\begin{align*}
& \operatorname{Res}_{z=0} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z)=\frac{1}{\log a} H_{n}+\frac{\log A}{\log a}-\frac{1}{2}, \tag{2.6}\\
& \operatorname{Res}_{z=\chi_{x}} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z)=\frac{A^{\chi_{x}}}{\chi_{x} \log a} \frac{n!\Gamma\left(1-\chi_{x}\right)}{\Gamma\left(n+1-\chi_{x}\right)} \text { for } x \neq 0,
\end{align*}
$$

where $\chi_{x}=\frac{2 x \pi i}{\log a}=z_{0, x}$.
Shifting the upper, the lower, and the right part of C^{\prime} (cf. the figure) to infinity and observing that the integrals over these parts of the contour vanish then yields

$$
\begin{align*}
\mathbb{E}_{n}= & \frac{1}{\log \frac{1}{a}} H_{n}-\frac{\log A}{\log a}+\frac{1}{2}-\sum_{x \in \mathbb{Z}\{0\}} \frac{A^{\chi_{x}}}{\chi_{x} \log a} \frac{n!\Gamma\left(1-\chi_{x}\right)}{\Gamma\left(n+1-\chi_{x}\right)} \\
& -\frac{1}{2 \pi i} \int_{-u-i \infty}^{-u+i \infty} \frac{(-1)^{n} n!}{z(z-1) \cdots(z-n)} f(z) d z . \tag{2.7}
\end{align*}
$$

We now use the well-known asymptotic expansions

$$
H_{n}=\log n+\gamma+O\left(\frac{1}{n}\right) \text { and } \frac{n!}{\Gamma\left(n+1-\chi_{x}\right)}=n^{\chi_{x}}\left(1+O\left(\frac{x^{2}}{n}\right)\right)
$$

(by Stirling's formula) to formulate our main result.
Theorem 1: The expected maximal lifetime \mathbb{E}_{n} of n independent players each of which has the Fibonacci distribution (or geometric distribution of order 2) fulfills, for $n \rightarrow \infty$,

$$
\begin{equation*}
\mathbb{E}_{n}=\log _{1 / a} n-\frac{\gamma+\log A}{\log a}+\frac{1}{2}-\varphi\left(\log _{1 / a} n\right)+O\left(n^{-u}\right) \tag{2.8}
\end{equation*}
$$

for $0<u<\min \left(1, \frac{\log |a|}{\log a}\right)$, and φ denotes a continuous periodic function of period 1 and mean 0 given by the Fourier expansion

$$
\begin{equation*}
\varphi(t)=\frac{1}{\log a} \sum_{x \in \mathbb{Z}\{0\}} A^{\chi_{x}} \Gamma\left(-\chi_{x}\right) e^{2 x \pi i t}=\frac{1}{\log a} \sum_{x \in \mathbb{Z}\{0\}} \Gamma\left(-\chi_{x}\right) e^{2 x \pi i\left(t-\log _{1 / a} A\right)}, \tag{2.9}
\end{equation*}
$$

which is rapidly convergent due to the exponential decay of the Γ-function along vertical lines. The remainder term is obtained by a trivial estimate of the integral and the (uniform) O-terms in Stirling's formula.

3. EXTENSIONS

Here, we briefly sketch the more general case where k consecutive hits are necessary to kill a player. In this case, the probability $\mathbb{P}(X=x)$ was derived by Philippou and Muwafi [9] in terms of multinomial coefficients. As described in the introduction, there is a bijection to the sequences

$$
\left\{\mathbf{0}, \mathbf{1 0}, \mathbf{1 1 0}, \ldots, \mathbf{1}^{k-1} \mathbf{0}\right\} \cdot \mathbf{1}^{k}
$$

which yield the probability generating function

$$
\begin{equation*}
\frac{p^{k} z^{k}}{1-q z-p q z^{2}-\cdots-p^{k-1} q z^{k}}=\frac{p^{k} z^{k}(1-p z)}{1-z+q p^{k} z^{k+1}} \tag{3.1}
\end{equation*}
$$

for the lifetime of a player (cf. [1, pp. 299ff], [3, p. 428], [7, p. 207], [8]). Likewise, the generating function of $\mathbb{P}\{X>x\}$ is given by

$$
\begin{equation*}
\frac{1-p^{k} z^{k}}{1-z+q p^{k} z^{k+1}} \tag{3.2}
\end{equation*}
$$

Again we factor the polynomial in the denominator

$$
1-q z-p q z^{2}-\cdots p^{k-1} q z^{k}=(1-\alpha z)\left(1-\alpha_{2} z\right) \cdots\left(1-\alpha_{k} z\right)
$$

with $|\alpha|>\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{k}\right|(\alpha>0)$. Then we have, by partial fraction decomposition and extracting coefficients,

$$
\begin{equation*}
\mathbb{P}\{X>x\}=A \alpha^{x}+A_{2} \alpha_{2}^{x}+\cdots+A_{k} \alpha_{k}^{x} \tag{3.3}
\end{equation*}
$$

with $A=\frac{\alpha(\alpha-p)}{q((k+1) \alpha-k)}$ and similar expressions for A_{2}, \ldots, A_{k}.
For the expectation of the maximal lifetime of n players, we obtain

$$
\mathbb{E}_{n, k}=\mathbb{E} \max \left\{X_{1}, \ldots, X_{n}\right\}=\sum_{m=1}^{n}(-1)^{m-1}\binom{n}{m} g(m)
$$

with

$$
g(z)=\sum_{\ell \geq 0}\left(A \alpha^{\ell}+\cdots+A_{k} \alpha_{k}^{\ell}\right)^{z} \text { for } \Re z>0 .
$$

For the purpose of analytic continuation of g, we consider $g(z)-\frac{A^{2}}{1-\alpha^{2}}$ and proceed as in (2.4) to obtain the continuation and a polynomial estimate for $g(z)$ along some vertical line $\mathfrak{R z}=-\varepsilon$ for sufficiently small $\varepsilon>0$.

We are now ready to perform similar calculations as in Section 2. Thus, we obtain
Theorem 2: The expected maximal lifetime $\mathbb{E}_{n, k}$ of n players each of which has the geometric distribution of order k satisfies

$$
\mathbb{E}_{n, k}=\log _{1 / a} n-\frac{\gamma+\log A}{\log a}+\frac{1}{2}+\psi\left(\log _{1 / a} n\right)+O\left(n^{-\varepsilon}\right)
$$

for $0<\varepsilon<\min \left(1, \frac{\log \left|\alpha_{2}\right|}{\log \alpha}\right)$ and a continuous periodic function ψ of period 1 and mean 0 whose Fourier expansion is given by

$$
\psi(t)=\frac{1}{\log \alpha} \sum_{x \in \mathbb{Z}\{0\}} A^{\chi_{x}} \Gamma\left(-\chi_{x}\right) e^{2 x \pi i t}=\frac{1}{\log \alpha} \sum_{x \in \mathbb{Z}\{0\}} \Gamma\left(-\chi_{x}\right) e^{2 x \pi i\left(t-\log _{1 / \alpha} A\right)}
$$

where $\chi_{x}=\frac{2 x \pi i}{\log \alpha}$.
By bootstrapping we find that, for $k \rightarrow \infty$,

$$
\alpha \sim 1-q p^{k}+\cdots \quad \text { and } A \sim 1+k q p^{k}+\cdots .
$$

REFERENCES

1. W. Feller. An Introduction to Probability Theory and its Applications. Vol. 1. New York: Wiley, 1957.
2. P. Flajolet R. Sedgewick. "Digital Search Trees Revisited." SIAM J. Comput. 15 (1986): 748-67.
3. N. L. Johnson, S. Kotz, \& A. W. Kemp. Discrete Univariate Distributions. New York: Wiley, 1992.
4. A. W. Kemp. "Second-Order Linear Recurrence Distributions and Their Properties." Manuscript.
5. P. Kirschenhofer \& H. Prodinger. "A Result in Order Statistics Related to Probabilistic Counting." Computing 51 (1993):15-27.
6. D. E. Knuth. The Art of Computer Programming. Vol. 3. Reading, Mass.: Addison-Wesley, 1973.
7. A. N. Philippou. "Distributions and Fibonacci Polynomials of Order k, Longest Runs, and Reliability of Consecutive- k out-of- n : F Systems." In Fibonacci Numbers and Their ApplicationsI 2:203-227. Ed. A. N. Philippou, G. E. Bergum, \& A. F. Horadam. Dordrecht, Reidel, 1986.
8. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "A Generalized Geometric Distribution and Some of Its Properties." Stat. and Probab. Letters 1 (1983):171-75.
9. A. N. Philippou \& A. A. Muwafi. "Waiting for the $k^{\text {th }}$ Consecutive Success and the Fibonacci Sequence of Order k." The Fibonacci Quarterly 20.1 (1982):28-32.
10. H. D. Shane. "A Fibonacci Probability Function." The Fibonacci Quarterly 11.5 (1973): 517-22.
11. W. Szpankowski \& V. Rego. "Yet Another Application of a Binomial Recurrence: Order Statistics." Computing 43 (1990):401-10.
12. C. Tallie \& G. P. Patil. "The Fibonacci Distribution Revisited." Communications in Statistics—Theory and Methods 15 (1986):951-59.
13. E. Zeckendorf. "Représentations des nombres naturels par une somme des nombres de Fibonacci ou des nombres de Lucas." Bull. Soc. Royale Sci. Liège 41 (1972):179-82.
AMS Classification Number: 05A15

[^0]: *This research was supported by the Austrian-Hungarian cooperation project 10U3.

