FIBONACCI, LUCAS AND CENTRAL FACTORIAL NUMBERS, AND π

Michael Hauss

Lehrstuhl A für Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany
(Submitted March 1993)

In [1], a solution of Problem B-705, the evaluation of the series $\sum_{n=1}^{\infty} a_{2 n} /\left(n^{2}\binom{2 n}{n}\right)$ for the Fibonacci numbers $a_{n}=F_{n}$ and the Lucas numbers $a_{n}=L_{n}$, proposed by H.-J. Seiffert, is given. The proof is essentially based on the power series expansion of $(\arcsin x)^{2}$. The same method yields, in the case $a_{n}=1$, the Catalan-Apéry representation $\pi^{2}=18 \sum_{k=1}^{\infty} k^{-2} /\binom{2 k}{k}$ (see [3]).

Now it is possible to deduce a more general formula by using the Taylor series expansion ([2])

$$
\begin{equation*}
\left(2 \arcsin \frac{x}{2}\right)^{m}=m!\sum_{k=m}^{\infty} \frac{|t(k, m)|}{k!} x^{k}, \quad|x| \leq 2, m \in \mathbf{N}_{0} . \tag{1}
\end{equation*}
$$

Here $t(k, m)$ denote the central factorial numbers of the first kind, which are defined by $\left(x^{[0]}:=1\right)$ (see [2], [4])

$$
x^{[k]}:=x \sum_{j=1}^{k-1}\left(x-\frac{k}{2}+j\right)=\sum_{m=0}^{k} t(k, m) x^{m}, \quad x \in \mathbb{R} .
$$

Observing that $\arcsin (\alpha / 2)=3 \pi / 10$ and $\arcsin (\beta / 2)=-\pi / 10$, as well as Binet's formula $F_{n}=$ $\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$ and $L_{n}=\alpha^{n}+\beta^{n}[\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2]$, and noting the representation (1), one can readily deduce

Theorem 1: For $m \in \mathbf{N}$, there hold

$$
\begin{align*}
& \pi^{m}=\frac{5^{m} m!\sqrt{5}}{3^{m}+(-1)^{m+1}} \sum_{k=m}^{\infty} \frac{F_{k}|t(k, m)|}{k!}, \\
& \pi^{m}=\frac{5^{m} m!}{3^{m}+(-1)^{m}} \sum_{k=m}^{\infty} \frac{L_{k}|t(k, m)|}{k!} . \tag{2}
\end{align*}
$$

The particular case $m=1$ yields

$$
\pi=\frac{5}{4} \sqrt{5} \sum_{k=0}^{\infty} \frac{F_{2 k+1}}{2 k+1} \frac{1}{16^{k}}\binom{2 k}{k}=\frac{5}{2} \sum_{k=0}^{\infty} \frac{L_{2 k+1}}{2 k+1} \frac{1}{16^{k}}\binom{2 k}{k} .
$$

For $m=2$, one obtains the solution of Problem B-705, and the case $m=3$ in (2) gives, by formula (xxii) of [2],

$$
\pi^{3}=\frac{750}{7} \sqrt{5} \sum_{k=1}^{\infty} \frac{F_{2 k+1}}{2 k+1} \frac{1}{16^{k}}\binom{2 k}{k} \sum_{j=1}^{k} \frac{1}{(2 j-1)^{2}} .
$$

Observe that, for large $k,\binom{2 k}{k} /\left(16^{k}(2 k+1)\right) \sim 4^{-k} k^{-3 / 2}$ (see [3]).
Vice versa, the Fibonacci and Lucas numbers can be expressed in terms of the central factorial numbers and π as follows.

Theorem 2: For $n \in \mathbf{N}$, there hold

$$
\begin{aligned}
& F_{n}=\frac{(-1)^{n} n!}{\sqrt{5}} \sum_{k=n}^{\infty} i^{k+n} \frac{T(k, n)}{k!} \frac{\pi^{k}}{5^{k}}\left(3^{k}+(-1)^{k+1}\right), \\
& L_{n}=(-1)^{n} n!\sum_{k=n}^{\infty} i^{k+n} \frac{T(k, n)}{k!} \frac{\pi^{k}}{5^{k}}\left(3^{k}+(-1)^{k}\right) .
\end{aligned}
$$

Here $T(k, n)$ are now the central factorial numbers of the second kind, given by

$$
T(k, n)=\frac{1}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(\frac{n}{2}-j\right)^{k}, \quad n, k \in \mathbf{N}_{0} .
$$

The central factorial numbers of the first and second kind are connected by the orthogonality formula $\sum_{k=0}^{N} t(n, k) T(k, m)=\delta_{n, m}, N:=\max (n, m)$ (see [2]; [4], p. 213).

To prove Theorem 2, one inserts the values $x=3 \pi / 5$ and $x=-\pi / 5$ into the expansion (see [2])

$$
\left(2 \sin \frac{x}{2}\right)^{n}=(-1)^{n} n!\sum_{k=n}^{\infty} i^{k+n} \frac{T(k, n)}{k!} x^{k}, \quad x \in \mathbf{R}, n \in \mathbf{N}_{0}
$$

and again uses the formula of Binet and $L_{n}=\alpha^{n}+\beta^{n}$, respectively.

REFERENCES

1. "Solution to Problem B-705: An Application of a Series Expansion for $(\arcsin x)^{2}$." (Proposed by H.-J. Seiffert.) The Fibonacci Quarterly 31 (1993):85-86.
2. P. L. Butzer, M. Schmidt, E. L. Stark, \& L. Vogt. "Central Factorial Numbers: Their Main Properties and Some Applications." Numer. Funct. Anal. Optim. 10 (1989):419-88.
3. P. L. Butzer \& M. Hauss. "Integral and Rapidly Converging Series Representations of the Dirichlet L-Functions $L_{1}(s)$ and $L_{-4}(s)$. Atti Sem. Mat. Fis. Univ. Modena 40 (1992):32959.
4. J. Riordan. An Introduction to Combinatorial Analysis. New York: Wiley, 1958.

AMS Classification Numbers: 11B39, 11B83 \%\%

