
PARTIAL SUMS FOR SECOND-ORDER RECURRENCE SEQUENCES 

Ao F. Horadam 
The University of New England, Armidale, Australia 2351 

(Submitted April 1993) 

1. BACKGROUND MATERIAL 

Motivation for this paper comes from a short article [4] in which some relations between a 
generalized Fibonacci sequence and the sequence of its partial sums were investigated. An oppor-
tunity was clearly provided for a deeper exploration of this theme. 

Accordingly, the purpose of this paper is 
(a) to extend the relations in [4] to generalized Pell numbers with (i) positive and (ii) nega-

tive subscripts, and 
(b) as an addendum, to expand the results in [4] to generalized Fibonacci numbers having 

negative subscripts. 

Consider the generalized Pell sequence {Pn} defined for all integers n by 

Pn+2=2Pn+l + P„ Pl = a,P2=b(P0=b-2a). (1.1) 

When a = 1, 6 = 2, the ordinary Pell sequence {p„} is generated, while when a = 1, b = 3, we 
derive the sequence {qn} defined by 

°n+2 = 2?»+l + In 1\ = 1, ft = 3 (*> =1) (1-2) 

so that q„=jQ„, the w* Pell-Lucas number [2]. Thus, we have the tabulation: 

0 1 2 3 4 5 6 7 8 ••• 
0 1 2 5 12 29 70 169 408 ••• (1.3) 
1 1 3 7 17 41 99 239 577 ••• 

n: 
Pn-
Qn'-

Observe that the numbers in {/?„} are alternately even and odd, while those in {qn} are all 
odd. 

The first few numbers in {P„} and the corresponding sums S„ = S"=i Pt are from (1.1) for 
n = 1,2,..., 10, therefore: 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

a 

a 
2a 
5a 
12a 
29a 
70a 
169a 
408a 

Pn 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
2b 
5b 

\2b 
29b 
10b 
1696 
4086 
9856 

a 
a 
2a 
4a 
9a 
21a 
50a 
120a 
289a 
697a 

s„ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
36 
86 
206 
496 
1196 
2886 
6966 
16816 

(1.4) 
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By standard techniques, e.g., use of (1.1) and induction, it is easy to establish that 

Pn = aPn-2 +*/Vi (P > 1, p_x = 1 [see (3.1)]) (1.5) 
and 

S„ = Pn+P"fa~b, (1-6) 
whence we deduce the recurrence 

S„+2 = 2S„+1 +S„+b-a (S0 = 0*P0 [see(1.1)]). (1.7) 

For subsequent calculations, we will need the Binet forms 

Pn= -7T (1.8) 
a-p 

and 
< 7 „ = ~ ^ , 0.9) 

where 
a = l + j2'9 fi = l-j2, so a + P = 2, ap = -l, a~p = 2^j2. (1.10) 

Use of (1.8)-( 1.10) produces the Sirnson formulas 

Pn+1P„-i-(Pn)2 = (-!)" ( l .H) 
and 

? „ + i ^ - i - ( ^ ) 2 = ( - i r + I 2 , (i.i2) 
as well as 

Pn=Pn-i + 9n-i, (1-13) 

9*=Pn+Pn-l> 0 1 4 ) 

^ - ->V2as»-»oo , (1.15) 
Pn 

and the Binet forms for Pn and S,,. 
Repeated use of the recurrence relations (1.1) for {p„}, where a = \,b = 2, and (1.2) for 

{q„}, where a = l,b = 3, respectively, lead to 

J^Pj = Pn±Pn±izl = ^±lZl by (1.14) (1.16) 
;=1 2 2 

and 

I > =/>»+!-i- ( i - 1 7 ) 

After considerable laborious, but nonetheless satisfying, calculations involving the above 
equations as appropriate, we determine the Sirnson formulas for Pn and Sn from (1.5) and (1.6), 
namely, 

Pn+iPn-i-Pt = H ) V +2ab-b2) (1.18) 
and (n > 1) 
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S^S^-S2 =^{(-l)^a2+2ab-b2)+a\_2-b2qn_l+2abpn_2}. (1.19) 

Accordingly, when n = 5 for instance, S6S4-S2 = 3a2 +4ab-%h2 from (1.19) or directly 
from (1.4), while P6P4-P2 =-a2-2ab + b2 from (1.18) or (1.4). [Who would ever have 
surmised anything like (1.19)?] 

Important special cases of (1.19) arise when a = 1, b = 2 (forp„), and a = 1, b = 3 (for qn). 
Generally, S0 = 0&P0=b-2a, unless b = 2a. Expressed otherwise, PQ is not part of the 

summation process. 

2, PARTIAL SUMS: POSITIVE SUBSCRIPTS 

A basic set of theorems on partial sums can now be established, of which only the first will 
show the detail. 

orem 1: S4„ = q2n(aqln_x + bq2n)+a-b. 

Proof: 

_ «0>4»-2 + />4«-l) + b(P4n-l + PAn) + a ~h 

2 
a(a4"-1+p4"-l-2) + b(a4"+/34" + 2) , 

by (1.6) 

by (1.5) 

_ h w n a\ 

= « ? 2 ^ 2 « - i + % 2 » ) 2 + « - * by (1.9) 

= 9 2 n ( ^ 2 » - l + ^ 2 » ) + « - * -
Likewise, 

Theorem 2: S4„_2=q2n_l(aq2n_2+bq2n_1). 

Theorem 3: S4n+l = q2„ (aq2„ + bq2n+l) - b. 

Theorem 4: S4n_x = q2„(aq2n_2 +bq2„_l)-a. 

Special cases occur when a = 1, b = 2 (i.e., the Pell sequence {/?„}), namely, for sn = Z"=1 p, 
sAn=92n<J2„-i-h (21) 

S4n-2 = ? 2 K ? 2 H - 1 > ( 2 2 ) 

^4„+l = (92»+l)2> ( 2 - 3 ) 

^ - i = (?2„) 2 - l = 2(p2„)2. (2.4) 

All four formulas (2. l)-(2.4) may be incorporated into the one neat expression [see (1.16)], 

[where we have invoked (1.6), (Pn = pn here), and (1.14)]. 
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However, a virtue of the forms (2.1)-(2.4) is that they display various obvious divisibility 
properties. Thus, q^An-i* 92n-i\s4n-i9 P2n\s4n-i» i n particular, n = 3 in (2.2) gives 4059 = 41.99, 
and n = 3 in (2.4) gives 9800 = 2(70)2. As an example of (2.5), ss = 696 = ^ - from (1.3). 

Observe also the important recurrence from (1.7), 

^ 2 = 2 ^ 1 + ^ + 1 (*o = 0). (2-6) 

Next, write s'n = Zf=1 qt. Then a -1, b - 3 (i.e., the sequence {#„}) in (1.6) lead to 

s'„=p„+1-l (^=0) , (2.7) 

i.e. (1.17), since />„+1 = g"+
2
?°+1 by (1.8) and (1.9), and in (1.7) lead to the recurrence 

s'n+2 = 2K+i+<+2 fo!=0). (2.8) 
Let 

(2.9) 

(2.10) 

Then, from (2.5) and (2.7), it follows that the sequence {a„} is 
« = 1 2 3 4 5 6 7 8 ••• 

^ = 1 4 11 28 69 168 407 984 ••• 
.sn = l 3 8 20 49 119 288 696 ••• 

<7„ = 0 1 3 8 20 49 119 288 ••• 

from which, by (2.6), (2.8), and (2.9), we derive the recurrence [cf. (2.6)] 

0-n+2=2<7„+1+<r„+l (<r0 = 0). (2.11) 

Reverting to (1.4), we notice that 

Sn=a(cr„_1 + 1)+Z>a„. (2.12) 

From (1.3) and (2.10), 
tf«=a-„+i-0-„-i (2.13) 

and 

" 2 ' 
while, from (1.12), we have the Simson formula for {&„}, 

(2.14) 

< W V i - ^ = ! { H r 1 - * » - i } - (215) 

Other properties of the sequences which flow from the above data include 

s„ = cr„+l, (2.16) 
<=0-„+0-n+i=/>„+i-l> (2.17) 

s*s*-i=Pn, (2-18) 
« - < - » = * „ , (2-19) 
^ - V 2 = f c (2.20) 

* ; -< -2=2 f t . (2.21) 
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Some of the above features are interrelated, e.g., (2.14) and (2.16) together confirm (2.5). 
Observe, from (1.4), (2.10), and (2.12), that an is the coefficient of b in Sn. Another way of 

arriving at this conclusion is to recall that in (2.9) a = 1 for both {pn} and {qn} while b = 3 for 
{qn} but b = 2 for {p„}, i.e., a nbn difference of 3 -2 = 1. 

Similar remarks apply later in relation to (1.4a), (2.10a), and (2.12a). 

3, PARTIAL SUMS: NEGATIVE SUBSCRIPTS 

Corresponding to the results for positive subscripts in the previous section, we have, for 
negative subscripts, 

7i: 1 2 3 4 5 6 7 8 — 
p_„: 1 -2 5 -12 29 -70 169 -408 ••• (1.3a) 
q_n\ -1 3 -7 17 -41 99 -239 577 ••• 

since 
P-n=H)"+1Pn (3-1) 

and 
9-„ = (-l)w<7„, (3-2) 

as may be readily demonstrated. 
Tabulating the simplest expressions in the generalized Pell sequence {P_„}> and the corre-

sponding sequence of sums {S_n} which begins afresh with S_x = P__u gives: 

n 
1 
2 
3 
4 
5 
6 
7 
8 

5a 
-12a 
29a 

-70a 
169a 

-408a 
985a 

-2378a 

P-n 
-
+ 
-
+ 
-
+ 
— 
+ 

2b 
5b 

lib 
29b 
70b 
169ft 
4086 
9856 

5a 
-7a 
22a 

-48a 
121a 

-287a 
698a 

-1680a 

S-„ 
-
+ 
-
+ 
-
+ 
-
+ 

2b 
3b 
9b 

20b 
50b 

1196 
2896 
6966 

(1.4a) 

Clearly, 
JP_„=a/?_„_2+6/)_n_1 [P 0 =6-2aas in( l . l ) ] . (1.5a) 

Write s_n = Z"=1 p_t. Then, as for (1.16), we obtain 

s_n = -Pn-P-n-^ = --3^± (SQ=0) (1.16a) 

since, by (1.8) and (1.9), 
q.n=p.n+p.n.v (1.14a) 

With a little effort, we derive 

S-n= ~" ~n
2

l - = a(s_n_2+\) + b(s_n_l-\) (S0=0) (1.6a) 

and the recurrence 
S_n+2 = 2S_n+l+S_„-3a + b (S0 =0). (1.7a) 
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Paralleling the procedures in the previous section, we have the following four theorems. 

Theorem la: S_4„ = q2„(~aq2n+2 + bq2n+l) + 3a-b. 

Theorem 2a: §_4n+2 = q2„(-aq2n +bq2n_l) + 2a. 

Theorem 3a: S_4n+1 = q2„(aq2n+l - bq2n)+a. 

Theorem 4a: S_4n_x = q2n+l(aq2n+2 -bq2n+1) + 2a - b. 

Putting a = 1, b = 2, we have the Pell numbers results: 

*-4„=-(?2„)2+l , (2.1a) 
S-4„+2=-(q2n-l)\ (2.2a) 

*-4»+i: =?2^2»-i+l> (2.3a) 

.S-4„-i = ftnftiH-l- ( 2 4 a ) 

Fortunately, (2.1a)-(2.4a) may be amalgamated into one pleasing form [cf. (1.16a)], 

s-n = --^- (2.5a) 

Furthermore, from (1.7a), 
s_„+2 = 2s_„+l+s_„-l (2.6a) 

Coming now to the special case a = 1, b - 3 again, we see that, denoting s!_„ - S,"=1 ?_,, 

sL„ = -p.„ (s'0 = 0) (2.7a) 
and 

sL„+2=2sL„+l + s'_„. (2.8a) 

Writing 
a_n=s'_„-s_„, (2.9a) 

we may tabulate values of {<r_„} as in (2.10) with a recurrence corresponding to (2.11), thus, 
n= 1 2 3 4 5 6 7 8 ••• 

sL„= -1 2 -5 12 -29 70 -169 408 ••• 
s_n= 1 - 1 4 - 8 21 -49 120 -288 ••• (2.10a) 

o-_„= -2 3 -9 20 -50 119 -289 696 ••• 
whence 

<T_„+2=2a_„+1+a_„ + l (<x0 = 0). (2.11a) 
It follows from (1.4a) that 

S_„=a(a_n_l+2)+bcr_„. (2.12a) 
Furthermore, 

(2.13a) 

(2.14a) 

while 
<l-n 

V-n 

= CF 

- _ 

-n 

q-

-<J. 

•n-\ ' 

-n+2 

- l 

434 [NOV. 



PARTIAL SUMS FOR SECOND-ORDER RECURRENCE SEQUENCES 

Additional results include 

One may also ascertain that 

s_„=a_„+l+l, (2.16a) 
iL„=-cr_„+1+a_„+2, (2.17a) 
s_„_l-s_„ = p_ri_l, (2.18a) 
sLn_l-!t_n=q-n-1, (2.19a) 
s_„_2-s_n=q_n_l, (2.20a) 

sin_2-s'_n=2p_n_v (2.21a) 

o\,+cr_„+1 = - l weven, 
„-o-_„+1= 0 wodd. 

Properties of {an} are the subject of another paper, so we do not pursue the occurence of it 
in this exposition. 

Other facets of the patterns in P±n and S±„ may be recorded: 

P„+(-iy-1P_„+2=2aqn_1, (3.4) 
P„+(-\yP_n+2=2(-a+b)p„_l, (3.5) 

Pn+(-\)nP_n+A = 2bqn_2, (3.6) 
Pn+(-\)"-lP_n+4 = 2(a+b)p„_2, (3.7) 

S2n+S.2n+i=2ap2n+2a-b, (3.8) 

Sir, ~ S-2.H-1. = ("<»+%2« - «, ( 3 -9) 
S2n+, + ̂ -2» = ("«+*)^2«+i + 2a - 3, (3.10) 

2̂»+i - £.2„ = 2ap2n+1 - a. (3.11) 

Simson formulas for P_n and £_„ may be obtained in the manner used for (1.18) and (1.19). 
In the first instance, 

P_„_1P„+1-P2„=(-l)"(a2+2aA-52), (1.18a) 

i.e., (1.18) is valid for all n. Discovery of the negative-subscript Simson analogue of (1.19) (with 
specializations for s_„ and s!_„) is left to the spirit of enquiry and adventure of the reader (to be 
attempted because it is there!). 

4. THE FIBONACCI CASE 

A more expansive treatment of [4] will now be outlined. Ordinary Fibonacci and Lucas 
numbers will be represented by fn and £n, respectively, while the upper-case notation Fn for the 
generalized Fibonacci number will be retained. To avoid confusion, we will use Tn = Z?=1 Ft 

Basic properties of {fn} and {ln} will be assumed. 
Mutatis mutandis, we have [4] 

Tn=Fn+2-b = afn+b(f„+l-l) (T0 = 0*F0=-a + b) (4.1) 

with, in. particular, 
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4 , = ^ W 2 - 2 £ [=F4n+2-b from (4.1)] (4.2) 
and 

V 2 = W W i [=F4„-6from(4.1)]. (4.3) 

Moreover [4], there is the recurrence 

T„+2 = TM + T„+b. (4.4) 

If a = 1, b = 1, and if we write fw = £f=1 / , then 

' „ = / „ + 2 - l , (45) 

>4„=W2n +2-2 [= / 4 n + 2 - l from (4.5)], (4.6) 
and 

' 4 - 2 = ^ 1 / 2 ^ 1 [ = / 4 n - l from (4.5)], (4.7) 

so that /2„_1|/4„_2, /2n+1k4„-2> e.g., for n = 4, (*7 = 29)|986 and (/9 = 34)^86. Furthermore, (4.4) 
yields the recurrence 

tn+t = tn+i+tn + \ Co=0)- (4-8) 

Instead of focusing on /„ , suppose we put a - 1, 6 = 3 and write t'n = £"=1 tt. Then 

^ = ^ 2 - 3 , (4-9) 

' 4»=*2A*2-6 [=^fl+2-3from(4.9)], (4.10) 
and 

with the recurrence 

C 2 = V I ^ H [ = 4 , - 3 from (4.9)], (4.11) 

C 2 = C i + ' „ + 3 Co = 0). (4.12) 

Again, observe the factorization and divisibility in (4.11). 
Table 1 lists values of Tn, tn, t'n [and rn (4.15)]. 

TABLE 1. Partial Sums for Fn (n = 1,2,..., 10) 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

a 

a 
a 

2a 
3a 
5a 
8a 
13a 
21a 

F„ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
b 

lb 
3b 
5b 
86 
136 
216 
346 

a 
a 
2a 
3a 
5a 
8a 
13a 
21a 
34a 
55a 

T 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

b 
2b 
Ab 
lb 
126 
206 
336 
546 
886 

*n 
1 
2 
4 
7 
12 
20 
33 
54 
88 
143 

t'n 
1 
4 
8 
15 
26 
44 
73 
120 
196 
319 

*» 
0 
2 
4 
8 
14 
24 
40 
66 
108 
176 

Negative subscripts are utilized to obtain results paralleling those above. First, however, we 
remark that [cf. (3.1), (3.2)] 
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/ - „=( - i ry . (4.i3) 
and 

i_n = (-iyin. (4.i4) 

Readers are urged to construct appropriate tables of values for f_n and^_„ from (4.13) and 
(4.14). See Table 2 for T_n = Z ^ F , . and hence for t_n and tL„ [and z_n (4.15a)]. 

TABLE 2„ Partial Sums for F_n (n = t,2,aoo,W) 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

2a 
-3a 

5a 
-8a 
13a 

-21a 
34a 

-55a 
89a 

-144a 

-̂„ 
-
+ 
— 
+ 
-
+ 
-
+ 
-
+ 

b 
2ft 
3b 
5b 
8b 

13ft 
21ft 
34ft 
55ft 
89ft 

2a 
- a 
4a 

-4a 
9a 

-12a 
22a 

-33a 
56a 

-88a 

T 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 

ft 
ft 

2ft 
3ft 
5ft 
8ft 

13ft 
21ft 
34ft 
55ft 

*-n 
1 
0 
2 

-1 
4 

-4 
9 

-12 
22 

-33 

':„ 
-1 
2 

-2 
5 

-6 
12 

-17 
30 

-46 
77 

*"-» 
-2 

2 
-4 

6 
-10 

16 
-26 

42 
-68 
110 

Repeated application of the recurrence relation for {Fn}, with the initial conditions, yields 

T_„ = -F_n+1+a (T0 = 0). (4.1a) 
In particular, 

ZL10 = -F_3+« = -88a + 55ft = ll(-8a + 5&) = *sF_4 ( i e > ^sl^-io.^Ul^-io)-
Accordingly, 

*_„=-/_„+1 + l (*0 = 0), (4.5a) 
and 

tL„ = -Ln+l + l W = 0). (4.9a) 

Setting 
r« = *'*-*, (*o=0), (4-15) 

we discover [cf. (2.11)-(2.15)] the following: 

r„=2(fn+l-l) = 2t„_1, (4.16) 
r„-rn-2=2fn, (4.17) 

r„+2 = ^ + 1 + r„+2, (4.18) 

^ + i ^ - i - ^ = 4 { ( - l ) " + 1 - / M _ 2 } . (4.19) 

Moreover, 

7 " = a ( I 2 i + 1) + ^ - ( 4 2 0 ) 

Replacing n by -w in (4.15) so that 

r_„ = f„-t_n (r0 = 0), (4.15a) 
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T 

T. 

-n-\ 

T 

-n+2 ~ 

T-n+l ' 

T 

T-n+l ' 

-T2 --

-n-2 , 

^-„, 
=4(-ir 

b^-. 

one may obtain a table of values of the numbers in the sequence {T_„}, whence 

T_„ = 2(-f_„) = 2(t_n-l), (4.16a) 

r_„-T_„+2=2f_„+l (»>2), (4.17a) 

(4.18a) 

(4.19a) 

(4.20a) 
z z 

Note that y T„ and | T . „ in (4.20) and (4.20a) are the coefficients of b in T„ and 21„, respec-
tively. Also refer to Tables 1 and 2. The reason for this is that a = 1 for both {/„} and {l„}, but 
b = 3 for {.£„} and b = 1 for {/„}, i.e., there is a "b" difference of 3 - 1 = 2. 

Going back now to {F„} and {T„}, we discover [cf (3.4)-(3.11)]: 

i 7 + ( _ i r + i F _ n + 2 = < i ( „ > 2 ) , (4.21) 

^ + ( - l ) " J P n + 2 = ( - i r ( - a + 2&)/„_1 (*>2), (4.22) 

Fn+(-irlF_n+4 = (2a + b)fn_2 («>4), (4.23) 

/ • , + ( - l ) " F . ^ = W ^ 2 . (4-24) 
T2„ + T.2n+l = (2a + b)f2„+a-b, (4.25) 

T2n-Z2„+l=b£2n -(a + b), (4.26) 

T2„+l + T_2n=M2n+x + a-b, (4.27) 

^2„+i - 712„ = (2a+J)/2n+1 - ( a + ft). (4.28) 

No doubt further identities of this genre are discoverable. 
Frequent comparison of corresponding outcomes for the Pell and Fibonacci cases is both 

desirable and instructive. In this context, discovery of the Simson formulas for Fn,Tn,tn, and t'n 

(for n > 0, n < 0)—some of them not a pretty sight!—might be undertaken. 

The Additions sn + s'n and tn + t'n 

Instead of considering the differences cr„ = s'n-sn and T„ =t'n-tn, suppose the additions 
K„ = s'„ +s„ and /L = t'+t„ are examined. 

Consider then Table 3, 

TABLE 3. Addition of Partial Sums 
w = 1 2 3 4 5 6 7 8 

K„ = s'„+s„ = 2 7 19 48 118 287 695 1680 
K_„ = sL„ + s_„ = 0 1 - 1 4 -8 21 -49 120 
K = **+*„ = 2 6 12 22 38 64 106 174 

A_„ = t'+L„ = 0 2 0 4 - 2 8 - 8 18 
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whence 

Moreover, 

On the other hand, 

while 

in which 
K0 = 0, (4.29) 
20 = 0, (4.30) 

JC»=CT»f2-l = *n+i-l» (4.31) 
^n+2=2Kn+1+K„+3, (4.32) 

* » + 2 - K „ = ? „ + 3 > (4-33) 
K^l-Kn=Pn*V (4-34) 

K-_„ = <T_„+2+1, (4.31a) 
K_„+2=2K_„+1+K_„-1. (4.32a) 

A„ = T„+2-2, (4.35) 
^ 2 = ^ 1 + ̂ + 4 , (4.36) 
K+2~K=2fn+4, (4-37) 
K+1-^n = 2f„+2, (4.38) 

l_„ = r_„+2+2, (4.35a) 
X_n+2=X_n+l+X_„-2. (4.36a) 

Aware of the opportunities offered by this amplification of our theory, we may develop 
properties corresponding to those for differences until satiated. 

5. CONCLUDING REMARKS 

Finally, there are a few thoughts worthy of further consideration. 

(a) Other pairs of sequences related like {/„} and {£n}, and {pn} and {qn} exist. Our results 
above suggest analogous—if, perhaps, less interesting—properties for such pairs. 

(b) Sequences {an} and {^rn} («>0) occur naturally inter alia in the minimal and maximal 
representations of positive integers by Pell and Fibonacci numbers, respectively. The former 
sequence is part of the stimulus for a separate research program. 

(c) Recurrences of the form 

i^+2 = kB^^ + i^ + c (k,c constants) (5.1) 

appear in many guises in this paper, for example, when Rn= Sn,sn,se
n,an,Kn,Tn,tn,t^Tn, 

and An, with extensions to negative subscripts. Such recurrences (5.1) arise in other circum 
stances, e.g., in a graph-theoretic context, and are the subject of a separate investigation. 

(d) Numbers qn of the sequence {q„=^Q„}9 where Qn are the Pell-Lucas numbers, feature 
prominently in a variety of papers. They (and pn) have been called the Eudoxus numbers [1], 
though their first "official" appearance, according to [5], seems to have been in [3] in 1916, 
while some of the properties oiqn in relation to pn have been recorded in [6] in 1949. 
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Can anyone tell me if there is any justification for the name "Eudoxus numbers" to describe 
the members of these interesting sequences? After all, the life-span of the ancient Greek mathe-
matical genius, Eudoxus (ca. 408-355 B.C.), is a very far off human event. 

Many, indeed, have been the fascinating and pleasurable ramifications of our modest attempt 
to expand the brief material in [4]. Evidently, there is much scope for further exploration and dis-
covery in this field. Mindful of our stated objectives, however, we rest our case at this point. 
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SEVENTH INTERNATIONAL 

RESEARCH CONFERENCE 
The Seventh International Research Conference on Fibonacci Numbers and 
Their Applications will take place in July of 1996 at the 

Institut Fiir Mathematik 
Technische Universitat Graz 

Steyrergasse 10 
A-8010 Graz, Austria 

Plan to attend. More information on the Local and International Committee 
members as well as the date of submission of papers and the exact dates of 
the meeting will appear in the future issues of The Fibonacci Quarterly. 
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