CYCLIC FIBONACCI ALGEBRAS

D. L. Johnson
Mathematics Department, University of Nottingham, Nottingham NG7 2RD, U.K.
A. C. Kim
Mathemetics Department, Pusan National University, Pusan, Korea
(Submitted April 1993)

0. INTRODUCTION

A Fibonacci algebra is a group equipped with a unary operation ϕ satisfying the laws

$$
(x y) \phi=x \phi y \phi, \text { and } x x \phi \ldots x \phi^{m-1}=x \phi^{m}
$$

for a fixed integer $m \geq 2$. If, in addition, the law

$$
x \phi^{n}=x
$$

holds for a fixed integer $n \geq 2$, the algebra is called periodic. The corresponding variety $\mathfrak{B}(m, n)$ has been studied by several authors (see [4] and the references cited there) and, in particular, it is known that the monogenic free object $A(m, n)$ is just the Fibonacci group

$$
F(m, n)=\left\langle x_{1} \ldots x_{n} \mid x_{i} x_{i+1} \ldots x_{i+m-1}=x_{i+m}, 1 \leq i \leq n, i \bmod n\right\rangle
$$

made abelian.
It is also known [3] that $A(m, n)$ is always a finite group whose order $a_{m, n}$ is the resultant of the polynomials

$$
\begin{equation*}
f(x)=x^{n}-1, g(x)=1+x+\cdots+x^{m-1}-x^{m} \tag{1}
\end{equation*}
$$

namely,

$$
\begin{equation*}
a_{m, n}=(m-1) \prod_{k=1}^{n-1}\left|g\left(\omega_{k}\right)\right| \tag{2}
\end{equation*}
$$

where the product is taken over all nontrivial $n^{\text {th }}$ roots of unity, $\omega_{k}=e^{2 \pi k i / n}, k=1,2, \ldots, n-1$. It follows that, for any prime p dividing $a_{m, n}$, the highest common factor $(f(x), g(x))_{p}$ over the prime field $G F(p)$ has positive degree. It is shown in [5] that $A(m, n)$ is cyclic if and only if

$$
\begin{equation*}
\operatorname{deg}(f(x), g(x))_{p}=1 \quad \forall p \mid a_{m, n} \tag{3}
\end{equation*}
$$

We shall apply this criterion to certain (classes of) values of m and n to determine when $A(m, n)$ is cyclic. It follows that, in these cases, the exponent of the free objects in $\mathfrak{B}(m, n)$ is just $a_{m, n}$. This reconfirms some of the results in [2], where a constructive approach is adopted to calculating exponents in $\mathfrak{B}(m, n)$. On the other hand, the case when $A(m, n)$ is noncyclic is also of interest, at least when $m=2$. For then it follows from results in [1] that $F(2, n)$ maps homomorphically onto the free object of rank two in the variety of groups of exponent p and class four for some prime p.

In each of the ensuing sections, we consider the $A(m, n)$ with $m, n \geq 2$ and related as in the section heading. We fix the notation in (1) and (2) above along with

$$
f_{1}:=f /(x-1)=1+x+\cdots+x^{n-1}
$$

and emphasize the fact that, throughout what follows, we consider only primes p dividing $a_{m, n}$.

1. $m \equiv-1(\bmod n)$

Setting $m=q n-1$, we see that $g=\left(1+x^{n}=\cdots+x^{(q-1) n}\right) f_{1}-2 x^{m}$, so that $a_{m, n}=(m-1) 2^{n-1}$. Also, for p odd, $\left(g, f_{1}\right)_{p}=\left(-2 x^{m}, f_{1}\right)_{p}=1$, so that $(f, g)_{p}=x-1$ and (3) holds in this case.

When $p=2$, however, $\left(g, f_{1}\right)_{2}=f_{1}$, whence $\left(g /(x+1), f_{1}\right)_{2}=f_{1}$ or $f_{1} /(x+1)$, which has degree ≥ 1 unless $f_{1}=x+1$, that is, $n=2$. In the case $p=n=2, f=1+x^{2}, g=1+x+\cdots$ $+x^{2 q-1}=(1+x)\left(1+x^{2}+\cdots+x^{2 q-2}\right)$, and $(f, g)_{2}=1+x$ if and only if q is odd, that is, $m \equiv 1$ $(\bmod 4)$.

Proposition 1: When $m \equiv 1(\bmod n), A(m, n)$ has order $(m-1) 2^{n-1}$ and is cyclic if and only if $n=2$ and $m \equiv 1(\bmod 4)$.

2. $\boldsymbol{m} \equiv \mathbf{0}(\bmod \boldsymbol{n})$

Here, the calculation is similar to (but much easier than) the above, and we obtain the following. We leave the proof as an exercise.

Proposition 2: When $m \equiv 0(\bmod n), A(m, n)$ has order $(m-1)$ and is cyclic.

3. $m \equiv 1(\bmod n)$

Setting $m=q n+1$, we see that

$$
g=\left(1+x^{n}+\cdots+x^{(q-1) n}\right) f_{1}+x^{m+1}-x^{m},
$$

so that $a_{m, n}=(m-1) n$ and we consider primes $p \mid(m-1) n$. It is clear that, over any field,

$$
h_{1}:=\left(g, f_{1}\right)=\left(x^{m-1}-x^{m}, f_{1}\right)=\left(1-x, f_{1}\right) .
$$

Now $f_{1}(1)=n$, so that for $p \nmid n$, this hcf is 1 and $(f, g)_{p}=x-1$ satisfies (3).
But if $p \mid n$, then $h_{1}=x-1$ and $(f, g)_{p}=(x-1)^{2}$ or $(x-1)$ according as $x-1$ divides

$$
g_{1}:=g /(1-x)=1+2 x+\cdots+(m-1) x^{m-2}+x^{m-1}
$$

or not. But

$$
g_{1}(1)=\frac{1}{2} m(m-1)+1=\frac{1}{2}(q n+1) q n+1,
$$

and for $p \mid n$ this is zero modulo p if and only if

$$
p=2, q \text { is odd, and } n \equiv 2(\bmod 4) .
$$

Proposition 3: When $m \equiv 1(\bmod n), A(m, n)$ has order $(m-1) n$ and is cyclic except when $n \equiv 2 \equiv m-1(\bmod 4)$.

$$
\text { 4. } m \equiv-2(\bmod n)
$$

We let $m=q n-2$ so that

$$
g=\left(1+x^{n}+\cdots+x^{(q-1) n}\right) f_{1}-x^{m}(2+x),
$$

and

$$
\begin{aligned}
a_{m, n} & =(m-1) \prod_{\omega^{n}=1 \neq \omega}|g(\omega)| \\
& =(m-1) \prod_{\omega^{n}=1 \neq \omega}|2+\omega|=(m-1)\left|f_{1}(-2)\right| .
\end{aligned}
$$

Moreover, $\left(g, f_{1}\right)=\left(2+x, f_{1}\right)$, and (g, f) is a divisor of $(x-1)(x+2)$. However, $\left|f_{1}(-2)\right|=$ $\left(2^{n}-(-1)^{n}\right) / 3$, and we distinguish four cases.
(i) $p \nmid\left(2^{n}-(-1)^{n}\right) / 3$, when $(g, f)=x-1$ and (3) holds
(ii) $p \nmid(m-1)$, when $(g, f)=x+2$ and (3) holds.
(iii) $p \mid\left(m-1,\left(2^{n}-(-1)^{n}\right) / 3\right)$ and $p \neq 3$, when $(g, f)=(x-1)(x+2)$ and (3) fails.
(iv) $p=3 \mid\left(m-1,\left(2^{n}-(-1)^{n}\right) / 3\right)$, when $-2 \equiv 1(\bmod 3)$ and

$$
(g, f)_{3}=(x-1)\left(1+x+\cdots+x^{n-1}, 1+2 x+\cdots+(m-1) x^{m-2}+x^{m-1}\right)_{3} .
$$

But the second term in the hcf, evaluated at $x=1$, is $\frac{1}{2} m(m-1)+1 \equiv 1(\bmod 3)$, showing that ($g, f)_{3}=x-1$ and (3) holds.

It follows that $A(m, n)$ is cyclic in this case except when case (iii) arises, that is, when there is a prime $p \neq 3$ such that $q n \equiv 3,(-2)^{n} \equiv 1(\bmod p)$.

Proposition 4: When $m=-2(\bmod n), A(m, n)$ has order $(m-1)\left(2^{n}-(-1)^{n}\right) / 3$ and is cyclic unless there is a prime $p \neq 3$ such that

$$
m \equiv 1(\bmod p) \text { and } n=k a,
$$

where a is the order of $-2 \bmod p$.
Thus, for example, we see that $A(6,4)$ is noncyclic by taking $p=5$.

$$
\text { 5. } n=2 m
$$

In this case

$$
\begin{aligned}
a_{m, n} & =(m-1) \prod_{\omega^{n}=1 \neq \omega}\left|\left(1+\omega+\cdots+\omega^{m-1}\right)-\omega^{m}\right| \\
& =(m-1) \prod_{\omega^{m}=-1}\left|1+\frac{1-\omega^{m}}{1-\omega}\right|=(m-1) \prod_{\omega^{m}=-1}\left|\frac{3-\omega}{1-\omega}\right| \\
& =(m-1)\left(1+3^{m}\right) / 2 .
\end{aligned}
$$

As usual, let $p \mid a_{m, n}$ and assume first that p is odd. Then $f=x^{2 m}-1$ is the product of coprime polynomials $x^{m}-1$ and $x^{m}+1$ and we compute $(f, g)_{p}$ in two stages. Firstly,

$$
\left(\left(x^{m}-1\right) /(x-1), g\right)=\left(\left(x^{m}-1\right) /(x-1), x^{m}\right)=1 \text {, }
$$

so that $\left(\left(x^{m}-1, g\right)_{p}=x-1\right.$ or 1 according as $p \mid(m-1)$ or not. Secondly,

$$
\left(1+x^{m},(1-x) g\right)=\left(1+x^{m}, 1-2 x^{m}+x^{m+1}\right)=\left(1+x^{m}, 3-x\right),
$$

which is $x-3$ or 1 according as $p \mid\left(1+3^{m}\right)$ or not, and since p is odd this is also the hcf of $1+x^{m}$ and g. Thus, for p odd, $(f, g)_{p}$ is linear unless p divides both $m-1$ and $3^{m}+1$.

Now let $p=2$ so that m must be odd, $2 k+1$ say, and a simple calculation shows that $(f, g)_{2}=x+1$ or $x^{2}+1$ according as k is even or odd.

Proposition 5: When $n=2 m, A(m, n)$ has the order $(m-1)\left(1+3^{m}\right) / 2$ and is cyclic unless either $m \equiv 3(\bmod p)$ or there is an odd prime p such that $m \equiv 1(\bmod p)$ and $3^{m} \equiv-1(\bmod p)$.
D. A. Burgess has pointed out that these equations certainly have a solution in the case in which $p \equiv 6 \pm 1(\bmod 12)$.

6. ACKNOWLEDGMENT

Both authors are grateful to the Royal Society, the Korean Science and Engineering Foundation, and to the British Council, without whose support this collaboration would not have been possible.

REFERENCES

1. H. Aydin \& G. C. Smith. "Finite p-Quotients of Some Cyclically-Presented Groups." To appear in J. London Math. Soc.
2. M. W. Bunder, D. L. Johnson, \& A. C. Kim. "On the Variety of Algebras $V(m, n) . "$ Preprint.
3. D. L. Johnson. "A Note on the Fibonacci Groups." Israel J. Math. 17 (1974):277-82.
4. D. L. Johnson \& A. C. Kim. "Periodic Fibonacci Algebras." Proc. Edinburgh Math. Soc. 35 (1992):169-72.
5. D. L. Johnson \& R. W. K. Odoni. "Some Results on Symmetrically-Presented Groups." To appear in Proc. Edinburgh Math. Soc.
AMS Classification Numbers: 20F05, 11 T06

