A NOTE ON BROWN AND SHIUE'S PAPER ON A REMARK RELATED TO THE FROBENIUS PROBLEM

Öystein J. Rödseth
Department of Mathematics, University of Bergen, Allégt. 55, N-5007 Bergen, Norway
(Submitted April 1993)

Given relatively prime positive integers a, b, let NR denote the set of positive integers with no representation by the linear form $a x+b y$ in nonnegative integers x, y. It is well known that the set NR is finite. For a nonnegative integer m, we put

$$
S_{m}(a, b)=\sum_{n \in \mathrm{NR}} n^{m}
$$

Sylvester [3] showed that $\# \mathrm{NR}=S_{0}(a, b)=\frac{1}{2}(a-1)(b-1)$ and, recently, Brown and Shiue [1] found a similar closed form for $S_{1}(a, b)$. Brown and Shiue did this by determining a closed form for the generating function $f(x)$ of the characteristic function of the set NR and then computing $f^{\prime}(1)=S_{1}(a, b)$. In this note we use a more direct approach, which gives us a closed form for $S_{m}(a, b)$ valid for every nonnegative integer m.

Let integers n, r, s be connected by the relations

$$
r \equiv n(\bmod a), 0 \leq r<a ; \quad b s \equiv r(\bmod a), 0 \leq s<a .
$$

We have that $n \in \mathrm{NR}$ if and only if $n=-a t+b s$ for some integer t in the interval $1 \leq t \leq\lfloor b s / a\rfloor$, that is, if and only if $n=a k+r$ for some integer k in the interval $0 \leq k \leq(b s-r) / a-1$. Hence,

$$
S_{m}(a, b)=\sum_{r=0}^{a-1} \sum_{k=0}^{\frac{b s-r}{a-1}}(a k+r)^{m}
$$

For the exponential generating function of the sequence $\left\{S_{m}\right\}$, this gives

$$
\begin{aligned}
\sum_{m=0}^{\infty} S_{m}(a, b) \frac{z^{m}}{m!} & =\sum_{r=0}^{a-1} \sum_{k=0}^{\frac{b s-r}{a-1}} \sum_{m=0}^{\infty}(a k+r)^{m} \frac{z^{m}}{m!} \\
& =\sum_{r=0}^{a-1} \sum_{k=0}^{\frac{b s-r}{a-1}} e^{(a k+r) z}=\frac{1}{e^{a z}-1}\left(\sum_{r=0}^{a-1} e^{b s z}-\sum_{r=0}^{a-1} e^{r z}\right)
\end{aligned}
$$

As r runs through the set $\{0,1, \ldots, a-1\}$, so does s. Hence,

$$
\sum_{r=0}^{a-1} e^{b s z}=\sum_{s=0}^{a-1} e^{b s z}
$$

and we find that

$$
\sum_{m=0}^{\infty} S_{m}(a, b) \frac{z^{m}}{m!}=\frac{e^{a b z}-1}{\left(e^{a z}-1\right)\left(e^{b z}-1\right)}-\frac{1}{e^{z}-1}
$$

Multiplying this relation by z gives

$$
\sum_{m=1}^{\infty} m S_{m-1}(a, b) \frac{z^{m}}{m!}=\sum_{i=0}^{\infty} B_{i} a^{i} \frac{z^{i}}{i!} \sum_{j=0}^{\infty} B_{j} b^{j} \frac{z^{j}}{j!} \sum_{k=0}^{\infty} \frac{a^{k} b^{k}}{k+1} \cdot \frac{z^{k}}{k!}-\sum_{m=0}^{\infty} B_{m} \frac{z^{m}}{m!},
$$

where $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$ are the Bernoulli numbers; cf. formula (6.81) and section 7.6 in [2]. Equating coefficients of z^{m} now gives the

Theorem: For $m=1,2, \ldots$, we have

$$
S_{m-1}(a, b)=\frac{1}{m(m+1)} \sum_{i=0}^{m} \sum_{j=0}^{m-i}\binom{m+1}{i}\binom{m+1-i}{j} B_{i} B_{j} a^{m-j} b^{m-i}-\frac{1}{m} B_{m} .
$$

It is not difficult to see that, considered as a polynomial in a and $b, S_{m}(a, b)$ has the algebraic factor $(a-1)(b-1)$. In addition, if m is even ≥ 2, then $S_{m}(a, b)$ also has the factor $a b(a b-a-b)$. Our theorem gives us, of course, Sylvester's result for S_{0} and Brown and Shiue's formula [1],

$$
S_{1}(a, b)=\frac{1}{12}(a-1)(b-1)(2 a b-a-b-1) .
$$

Also, for S_{2}, we obtain a rather simple formula:

$$
S_{2}(a, b)=\frac{1}{12}(a-1)(b-1) a b(a b-a-b) .
$$

REFERENCES

1. T. C. Brown \& P. J.-S. Shiue. "A Remark Related to the Frobenius Problem." The Fibonacci Quarterly 31.1 (1993):32-36.
2. R. L. Graham, D. E. Knuth, \& O. Patashnik. Concrete Mathematics. Reading, Mass.: Addison-Wesley, 1990.
3. J. J. Sylvester. "Mathematical Questions with Their Solutions." Educational Times 41 (1884):21.

AMS Classification Numbers: 11B57, 11B68

