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I. INTRODUCTION 

The length of the physical year in days is not an integer. This simple fact has complicated 
efforts to make a calendar for thousands of years. Both the Julian and the Gregorian calendars 
use a scheme that involves the periodic insertion of extra days, or intercalation. A year with an 
intercalated day is called a leap year. 

In the Julian calendar, an extra day was inserted every fourth year. In the Gregorian calendar 
(commonly in use today) an extra day is inserted every fourth year, exclusive of century years, 
which are leap years only if divisible by 400. From this, we see that the average length of the year 
in the Julian calendar was 

365 + - = 365.25 
4 

days, while in the Gregorian calendar, the average length is 

365 + 1 — L + _L = 365+- — + — - — = 365.2425 
4 100 400 4 4-25 4-25-4 

days. Both these numbers are approximations to the true length of the year, which is currently 
about 365.242191 days [1, p. CI]. 

In this note, we will examine a scheme for leap year determination which generalizes both the 
Julian and Gregorian calendars and includes the modifications of the Gregorian calendar sug-
gested by McDonnell [2]. Although our results will be phrased in the language of the calendar, 
they are in fact purely number theoretical in nature. 

H. THREE INTERCALATION SCHEMES FOR LEAP YEARS 

An intercalation scheme describes when to insert extra days in a year to keep the calendar 
synchronized with the physical year. We assume that exactly 0 or 1 extra days are inserted each 
year. A year when one day is inserted is called a leap year. 

Let the length of the year be /.+/? days, where / i s an integer and 0 < J3 < 1. Let L(N) count 
the number of years y in the range 1 < y < N which are declared to be leap years. A good inter-
calation scheme will certainly have limJV_>co

:^- = )9. A much stronger condition is that 
\L(N) - J3N\ should not be too large. 

We now describe three intercalation schemes. 

A Method Generalizing the Julian and Gregorian Calendars 

Let a1?a2,... be a finite or infinite sequence of integers with ax > 1 and at > 2 for i > 2. We 
call such a sequence (af) an intercalation sequence. 
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We now say that Nis a leap year if Nis divisible by al9 unless N is also divisible by axa2, in 
which case it is not, unless N is also divisible by axa2a3y in which case it is, etc. More formally, 
define the year N to be a leap year if and only if 

ft(-l)Mdw(N,ala2...ak) = l9 

where the function div(x, y) is defined as follows: 

div(x,j) = j ^ ifj|x; 
otherwise. 

For the Julian calendar, the intercalation sequence is of length 1: ax-A. The Gregorian 
calendar increased the length to 3: ax - 4, a2 = 25, a3=4. Herschel ([5], p. 55) proposed extend-
ing the Gregorian intercalation sequence by a4 = 10, which results in the estimate /? =.24225. 
McDonnell [2] has proposed 

(al,a2,...,a5) = (4,25,4,S,27), 

corresponding to the estimate P =.242199. 
The method has the virtue that it is very easy to remember and is a simple generalization of 

existing rules. In section III of this paper we examine some of the consequences of this scheme. 

Ail Exact Scheme 

Suppose we say that yearj is a leap year if and only if 

L^+I /2 J -LAJ- I )+ I /2 J=I 

Then L(N) = [_>S?Vr + 1/2J; in other words, L(N) is the integer closest to flN. This is clearly the 
most accurate intercalation scheme possible. However, it suffers from two drawbacks: it is 
unwieldy for the average person to apply in practice, and (3 must be known explicitly. 

This method can easily be modified to handle the case in which (3 varies slightly over time. 
Further, it works well when the fundamental unit is not the year but is, for example, the second. 
It then describes when to insert a "leap second." This method is essentially that used currently to 
make yearly corrections to the calendar. 

A Method Based on Continued Fractions 

We could also find good rational approximations to /? using continued fractions. For exam-
ple, using the approximation .242191 to the fractional part of the solar year, we find 

.242191 = [0, 4, 7, 1, 3, 17, 5, 1, 1, 7, 1, 1, 2] 

and the first four convergents are 1/4, 7/29, 8/33, and 31/128. The last convergent, for example, 
tells us to intercalate 31 days every 128 years. McDonnell notes [personal communication] that 
had binary arithmetic been in popular use then, Clavius would almost certainly have suggested an 
intercalation scheme based on this approximation. 

The method suffers from the drawback that the method for actually designating the particular 
years to be leap years is not provided. For example, the third convergent tells us to intercalate 8 
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days in 33 years, but which of the 33 should be leap years? In 1079, Omar Khayyam suggested 
that years congruent to 0, 4, 8, 12, 16, 20, 24, and 28 (mod 33) should be leap years [5]. 

HI. SOME THEOREMS 

Given an intercalation sequence (a1?a2,...), it is easy to compute L(N) using the following 
theorem. 

Theorem 1: Let L(N) be the number of leap years occurring on or before year N, i.e., 
N 

^ W = ZI ( - l ) , + 1 d iv (^a 1 a 2 . . . a , ) . 

Then 
i + i 

Proof: It is easy to see that, for y > 1, we have 

div(x,.y) = 

N 
ala2...at 

x-l 

Thus, we have 

^ W = ZZ(-l) '+ 1div(*,a1a2. . .a,) 
k=l7>1 

= I(-l)'+ 1idiv(^,a1a2.. .a,.) 
i > i fc=i 

N f\ 

/>i it=i 

=I(-i> 7+1 

7>1 

VI 

N 

k-l 
ax...at 

a^.M, 

which completes the proof. D 

Theorem 1 explains several things. First of all, it gives the relationship between the intercala-
tion sequence at and the length of the physical year in days. Write 

1 1 
a- - + • 

Clearly we have 
ax axa2 

lim —-—- = a. 
JV->oo JV 

Then if the length of the physical year is I+J3 days, where 0< /?< l , we would like a to be as 
close as possible to fl; for, otherwise, the calendar will move more and more out of synchroniza-
tion with the physical year. 
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Therefore, to minimize error, we can assume that the at have been chosen so that a-p. It 
is somewhat surprising to note that even this choice will cause arbitrarily large differences 
between the calendar and the physical year; this in spite of the fact that the behavior on average 
will be correct. 

Suppose al9 a2,... have been chosen such that 

a = -
1 1 1 

— + 

The next theorem estimates how far out of sync the calendar can be. 

Theorem 2: Define NJ=-l+a1-ata2 + •••+(- l ) J + 1 axa2...ay. Then, for all r > 0, 

r+l 

^2r+1«-Z(iV2r+1)>E 
A 

1-
•hj-ij 

1 — 
> 

2 J J 

Proof: It is easily verified that, if i < j , then 

N, N, —LJ-, if J is even; 

\ax...at • if i is odd. 

Thus, wre find 

N2r+la-L(N2r+l) = ^ 2 , + l Z 
( - ! ) ' • 

•+i "\ 

V 

2r+2 

a*a~ ...a, /=! w l w 2 
-K-iy+1 

'»/ /=i 

N. 2r+l 

( 
\ /+ l N, 

1=1 

2r+2 f ft[ 

2r+l 

v a 1 . . . a / 

.N. 2r+l 

a,...a, 
+ K-i) 

;=2r+3 

/ + l _ ^ 2 r + l _ 

a,...a, 

* ZH)I+1 
/=i 

2r+l 

^ . . . a , -
M 2r+l 

. ^ . . . a , 
r+l AT r+l AT 
y iV2/-l y iV2y-l 
7=1 a l " a2j-l /=1 a l " a2j 

r+l 

=z 
# 2/-1 

, = i « i - - - « 2 y - i 
1 - -

*ij 

Now, if we observe that N2j-i >a1...a2j-i-al... a2j_2 > then we find that 

r+l 

N2r+la-L(N2r+l)>J] 
7=1 a 2/-1 J % J 

which is the desired result. • 

Thus, the difference N2r+la- L(N2r+l) can be made as large as desired as r -»oo. There-
fore, if a is an irrational number, there is no way to avoid large swings of the calendar. 
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As an example, consider the Gregorian calendar with intercalation sequence (al9a29a3) = 
(4,25,4). Then N3 = 303. For example, in the period from 1600 to 1903, we would expect to 
see 303-.2425 = 73.4775 leap years (assuming the length of the year is precisely 365.2425 days), 
whereas the Gregorian scheme produces only 72 leap years. 

We now assume that the fractional part of the year's length in days is an irrational number a. 
We also assume that the intercalation sequence ak is that given by the Pierce expansion (see [3], 
[4], [6]) of a, i.e., the unique way to write 

1 1 1 
a = +-ax axa2 a^i2a3 

such that the at are integers with 1 < ax < a2... . It is known that the expansion terminates if and 
only if a is rational. For example, 

^ , ™ 1 1 1 1 
.242191 = + -4 4-32 4-32-2232 4-32-2232-15625 

Then we will show that 

Theorem 3: For almost all a, we have 

Na-L(N) 4l 
l i m s u p h M =^~' 

Proof: The proof is in two parts. First, we show that, for all s > 0, there exists an integer N 
such that 

VlogN 2 

Second, we show that, for all s > 0, we have 

JfogN 2 
for all N sufficiently large. 

We need the following two simple lemmas. 

Lemma 4: For almost all a, 
l i mlog(a a„) = 1 

«-»oo n 12 

Proof: In [6] it is shown that, for almost all a , 

l i m l ^ ^ i . 

From this, the desired result follows easily. D 

Lemma 5: Z£=i -£- converges for almost all a. 

Proof: See Theorem 12 in [6]. • 
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Now we can return to the proof of the first part of Theorem 3. Let a be chosen, and write 

c=—+—+•••. 

Let sbe given, and choose rx sufficiently large so 

togC^...^) ^ 1 
r2/2 {l-sf 

for all r>rv This can be done by Lemma 4. Also choose r sufficiently large so 

c4i 
2r + l <s. 

This can be done by Lemma 5. 
Then we find 

N2r+la-L(N2r+l)>^ 
r+lf i 

1 
v.--0 

V °v-ij V auj 
>r + l-C. (1) 

Now, from the definition of Nj, we have Nlr+y < ax.. .a2r+1; therefore, 

2/" + l f 1 ^ 
•JfogN: 2r+l fi \\ •e) 

because we have chosen r sufficiently large. 
Now, dividing both sides of (1) by ̂ /log N2r+l and using the estimate just obtained, we see 

N, '2r+1a - L(N2r+l) ^ r +1 - C j ^ 

2r+l 2r + l 

' 4i c4i 
2 2r + l 

( ! - * )> 4i S. 
2 -e ( ! -*)> ^ - ( 1 - 3 * ) , 

which completes the proof of the first part of Theorem 3. 
Now let us complete the proof of Theorem 3 by showing that, for almost all a and all N suf-

ficiently large, 

We need the following simple lemma 

N Lemma 6: Na - ]T (-1)' +1 r + \ 
< + -

N 
2 ax...ar{ar+l) 

Proof: Remez [4] has noted that 

,+ l 1 

/=! ax.,.at ax...ar{ar + 0 

1994] 421 



PIERCE EXPANSIONS AND RULES FOR THE DETERMINATION OF LEAP YEARS 

Multiplying by N, we get 

Na-NJ^(-iy+l—— < N 

Also we have 

#£(-!)' 

7=1 

+1 

^ . . . a , al...ar(ar +1) 

/=i a,...a ! • • • " / y /=i 
-K-iy +i N 

ax...ai 

r + \ 

(2) 

(3) 

since, to maximize this difference, we let the odd-numbered terms equal 1. Adding (2) and (3), 
we get the desired result. • 

Now, given s, choose N sufficiently large so 

(a) \ogN> 
2s 2 ? 

(b) !(fll-flr) > 1 _ 
r2/2 (l+s)2 forallr>^/21og#. 

By Lemma 4, this can be done for almost all a. 
Now, from Lemma 6, we have 

M*-E(-I> i + i 

i = i 

N 

«!...«, 
r + \ 

< + -
N 

2 al...ar(ar +1) 

Put r = -yJlQogNXl + ef . Then, from part (b) of the hypothesis on N, we have 

log(a1...q>.) _ 1 

(4) 

(\ogN){\ + sf (l + s)2 

and so al...ar> N. Therefore 

K-iy i + i 

i = i 

JV 
= £(iV). 

Hence, we can substitute in equation (4) to get 

2 ar+l 2 ar+l 2 

since ar > 1. Dividing both sides of this equation by ^logN, we see that 

Na-L(N) V2, , x „ /r- V2 / t c N ;, „ < — ( l + g) + 2 V 2 g < — ( l + 5g), 
ylogN 2 2 

which completes the proof of Theorem 3. D 

In a similar fashion, we can show that 

SaUlfa-lW=_£_ 
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Roughly speaking, Theorem 3 states that we can expect fluctuations of approximately -w-2^— 
days at year N of the calendar. Though this type of fluctuation can grow arbitrarily large, it is 
small for years of reasonable size. For example, for most a, we would have to wait until about 
the year 3.6-1042 to see fluctuations on the order of a week in size. 
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