NUMBER OF MULTINOMIAL COEFFICIENTS NOT DIVISIBLE BY A PRIME

Nikolai A. Volodin

The Australian Council for Educational Research Limited, Camberwell 3124, Melbourne, Victoria, Australia^{*} (Submitted March 1993)

We consider the n^{th} row of multinomial coefficients of the order ℓ :

$$(j_1, j_2, ..., j_\ell) = \frac{n!}{j_1! j_2! ... j_\ell!},$$

where $j_i \ge 0, i = 1, ..., \ell$, and $n = j_1 + j_2 + \dots + j_{\ell}$.

The number of multinomial coefficients not divisible by p^N , where p is prime and N is a fixed whole integer, for various ℓ , p, and N was studied by L. Carlitz [1], [2], F. T. Howard [3], [4], [5], [12], R. J. Martin and G. L. Mullen [6], and the author [7]. Let $g(n, \ell, p^N)$ be a number of multinomial coefficients in the n^{th} row of order ℓ not divisible by p^N , and

$$G(n, \ell, p^{N}) = \sum_{k=1}^{n-1} g(k, \ell, p^{N})$$

In the general case, an exact formula for $g(n, \ell, p^N)$ was obtained by F. T. Howard [5] for N = 1, 2, 3 and by the author [7] for N = 1, 2. It is not difficult to show that the behavior or $g(n, \ell, p^N)$ is very irregular and from that point of view it is better to study $G(n, \ell, p^N)$ which changes more regularly. The function $G(n, \ell, p^N)$ was studied by K. B. Stolarsky [8], [9] and H. Harborth [10] for $N = 1, \ell = p = 2$; by A. H. Stein [11] for $N = 1, \ell = 2$, and arbitrary p; and by the author [7] for arbitrary ℓ and p.

More precisely, the following exact formula was obtained in [7]:

$$G(n, \ell, p) = \sum_{k=0}^{m} (\ell, p-1)^k \frac{a_k}{\ell} \prod_{i=k}^{m} (\ell-1, a_i),$$
(1)

where $n-1 = a_0 + a_1 p + \dots + a_m p^m$. It is not difficult to show that $G(n, \ell, p)$ is of the order n^{θ} , where $\theta = \log_n(\ell, p-1)$. The following theorem gives a more exact result.

Theorem 1: $\alpha \equiv \limsup_{n \to \infty} G(n, \ell, p) / n^{\theta} = 1.$

Unfortunately, there are no similar results for $\beta \equiv \liminf G(n, \ell, p) / n^{\theta}$ even in particular cases.

In the general case, only the following elementary estimate is known: $\beta \ge (\ell, p-1)^{-1}$.

In the particular case p = 2 (following H. Harborth [10]), we are able to prove the following result.

^{*} This research was undertaken while the author was in the Statistical Department of the University of Melbourne.

Theorem 2: If we consider the sequence $q_r = G(n_r, \ell, 2) / n_r^{\theta}$ with $n_r = 2n_{r-1} \pm 1, n_0 = 1$, where + or - is chosen so that q_r becomes minimal, then $\{q_r\}$ is strictly decreasing.

This theorem is a generalization of the lemma from [10] for the case of binomial coefficients to the case of multinomial coefficients. We should also note that the sequence $\{n_r\}$ is not the same for different ℓ . In Table 1 the values of n_r for various r and ℓ are given.

	r											
l	1	2	3	4	5	6	7	8	9	10	15	30
$\begin{bmatrix} 2\\ 3 \end{bmatrix}$	3	5 7	11 13	21 27	43 53	87 107	173 215	347 429	693 859	1387 1719	44395 54999	1454730075 1802202477
45	3	7 7	13 13	27 27 27	55 55	109 109	219 219 219	439 439	877 877	1755 1755	56171 56173	1840625371 1840700855
10	3	7	13	27	55	111	221	443	887	1775	56795	1861082589

TABLE 1	
---------	--

In Table 2 we give values of n_r and $q_r = G(n_r, 2, 2) / n_r^{\theta}$.

r	n _r	q_r	r	n _r	q_r	
1	1	1,000000	26	45460315	0.812556563402	
2	3	0.876497	27	90920629	0.812556561634	
3	5	0.858126	28	181841259	0.812556559863	
4	11	0.827243	29	363682519	0.812556559862	
5	21	0.826359	30	727365037	0.812556559272	
6	43	0.816719	31	1454730075	0.812556559174	
7	87	0.815382	32	2909460149	0.812556559092	
8	173	0.813788222	33	5818920299	0.8125565590457850017	
9	347	0.813086063	34	11637840597	0.8125565590398820396	
10	693	0.812934013	35	23275681195	0.8125565590234059925	
11	1387	0.812675296	36	46551362391	0.8125565590216437317	
12	2775	0.812657623	37	93102724781	0.8125565590182076960	
13	5549	0.812592041	38	186205449563	0.8125565590170475496	
14	11099	0.812575228	39	372410899125	0.8125565590166681715	
15	22197	0.812567096	40	744821798251	0.8125565590162182798	
16	44395	0.812560137	41	1489643596503	0.8125565590162065045	
17	88789	0.812559941	42	2979287193005	0.8125565590160702999	
18	177579	0.812557589	43	5958574386011	0.8125565590160436690	
19	355159	0.812557229	44	11917148772021	0.8125565590160253147	
20	710317	0.812556865	45	23834297544043	0.8125565590160134328	
21	1420635	0.812556846	46	47668595088085	0.8125565590160123562	
22	2841269	0.812556653	47	95337190176171	0.8125565590160082524	
23	5682539	0.812556588	48	190674380352343	0.8125565590160076856	
24	11365079	0.812556582	49	381348760704685	0.8125565590160069672	
25	22730157	0.812556563	50	762697521409371	0.8125565590160066187	

TABLE 2

On the other hand, if we consider the case $\ell = 2, p = 3, 5, 7$, then there exist increasing sequences $\{n_r\}$ such that $G(n_r, 2, p)/n_r^{\theta} < G(n_{r-1}, 2, p)/n_{r-1}^{\theta}$. Calculations give us the following sequences:

1994]

$$n_0 = 0, \ n_r = 3n_{r-1} + 1, \ \text{for } p = 3, n_0 = 0, \ n_r = 5n_{r-1} + 2, \ \text{for } p = 5, n_0 = 0, \ n_r = 7n_{r-1} + 3, \ \text{for } p = 7.$$

If we denote $\beta_p = \liminf_{n \to \infty} G(n, 2, p) / n^{\theta}$ and $\hat{\beta}_p = \liminf_{r \to \infty} G(n_r, 2, p) / n_r^{\theta}$, then

$$\hat{\beta}_{3} = 2^{\log_{3} 2 - 1} = 0.774281326315 \hat{\beta}_{5} = 2^{\log_{5} 3 - 1} = 0.802518299262 \hat{\beta}_{7} = 2^{\log_{7} 4 - 1} = 0.819271977267$$
 (*)

Very probably $\beta_p = \hat{\beta}_p$, but at the present time we do not have complete proof of this fact. For that purpose it is necessary to show that the sequences $\{n_r\}$ which were defined earlier have the following property: $G(n_r, 2, p)/n_r^{\theta} < \min_{n_{r-1} < n < n_r} G(n, 2, p)/n_r^{\theta}$, r = 1, 2, ..., for p = 2, 3, 5, and 7.

Proof of Theorem 1: It follows from (1) that

$$G(p^{m}, \ell, p) / p^{m\theta} = (\ell, p-1)^{m} / p^{m\theta} = 1$$
(2)

for all *m*, which gives us $\alpha \ge 1$.

Furthermore, we will show that

$$b_i \equiv G(ip^m, \ell, p) / (ip^m)^{\theta} \le 1, \text{ when } 1 \le i \le p.$$
(3)

For this purpose, we consider the fraction $b_i / b_{i+1} \equiv c_i$ which, due to (1), is

$$c_i = \left(\frac{i+1}{i}\right)^{\theta} \left(\frac{i}{\ell+1}\right),$$

and we shall show that $c_1 = 2^{\theta} / (\ell + 1) \ge 1$ or, in other words, that

$$(\ell, p-1) > (\ell+1)^{\log_2 p}$$
 (4)

Since

$$\frac{(\ell, p-1)(\ell+2)^{\log_2 p}}{(\ell+1)^{\log_2 p}(\ell+1, p-1)} = \frac{\ell+1}{\ell+p} \left(1 + \frac{1}{\ell+1}\right)^{\log_2 p}$$

we consider, under $t \ge 3$, the function

$$\varphi(p,t) = \frac{t}{t+p-1} \left(1 + \frac{1}{t}\right)^{\log_2 p}$$

as a function of p and, taking the derivitave, we find that

$$\varphi(p,t) = \frac{\varphi(p,t)}{p \ln 2} \left[\ln \left(1 + \frac{1}{t} \right) - \frac{p \ln 2}{t + p - 1} \right] < \frac{\varphi(p,t)}{t p \ln 2} \left(1 - \frac{t p \ln 2}{t + p - 1} \right) < 0$$

because tp/(t+p-1) is increased either by p or by t, and

$$\frac{tp\ln 2}{t+p-1}\Big|_{t=3, p=2} = \frac{3}{2}\ln 2 > 1.$$

[NOV.

404

Hence, $\varphi(p, \ell+1) < \varphi(2, \ell+1) = 1$, and $(\ell, p-1)/(\ell+1)^{\log_2 p}$ is decreased in ℓ . So

$$(\ell, p-1)/(\ell+1)^{\log_2 p} < (3, p-1)/p^2 \le 1$$
, when $\ell \ge 3$,

which proves (4).

As the derivative of the function

$$\psi(x) = \left(\frac{x+1}{x}\right)^{\theta} \frac{x}{\ell+x}$$

is equal to

$$\psi(x) = \left(\frac{x+1}{x}\right)^{\theta} \frac{\ell(x+1) - \theta(\ell+x)}{(x+1)(\ell+x)^2},$$

then $\psi(x)$ has only one extreme and, as $c_1 > 1$, this extreme is the minimum. As $b_1 = b_p = 1$ for $2 \le i \le p-1$, we have $b_i \le 1$.

From (1) it is easy to prove, for $0 \le x \le p^m$, that the following recurrent formula is valid:

$$G(a_m p^m + x, \ell, p) = G(a_m p^m, \ell, p) + (\ell - 1, a_m)G(x, \ell, p),$$
(5)

where $1 \le a_m \le p - 1$. We show that

$$G(a_m p^m + x, \ell, p) / (a_m p^m + x)^{\theta} \le 1 \text{ for all } x = 0, \dots, p^m - 1, m = 0, 1, \dots$$
(6)

is valid.

The inequality (6) is evident when m = 0. Let us suppose that (6) is valid in the case of all positive numbers less than m. Then we will have $G(x, \ell, p) \le x^{\theta}$ for $0 \le x \le p^m$. Then, from (3) and (5), we have

$$G(a_m p^m + x, \ell, p) / (a_m p^m + x)^{\theta} = [G(a_m p^m, \ell, p) + (\ell - 1, a_m)G(x, \ell, p)] / (a_m p^m + x)^{\theta} \leq [(a_m p^m)^{\theta} + (\ell - 1, a_m)^{\theta}] / (a_m p^m + x)^{\theta} \equiv f(x), \ 0 \leq x < p^m.$$
(7)

In the interval $[0, p^m]$ the function f(x) has only one extreme, which is the minimum. So (5) is valid. From (3) and (6), we have $\alpha \le 1$ and, when (2) is added, $\alpha = 1$. Theorem 1 is proved.

Proof cf Theorem 2: We suppose

$$G(2n_r+1, \ell, 1) / (2n_r+1)^{\theta} \ge q_r \text{ and } G(2n_r-1, \ell, 1) / (2n_r-1)^{\theta} \ge q_r.$$
(8)

If we denote $a = 2n_r$ and $b = \ell^{t_r} / ((\ell+1)G(n_r, \ell, 2))$, then, from the definition of q_r and assumptions (7) and (8), we have

$$1+b \ge \left(1+\frac{1}{a}\right)^{\theta}$$
 and $1-b \ge \left(1-\frac{1}{a}\right)^{\theta}$.

Addition of these two inequalities yields the contradiction $2 \ge 2 + \theta(\theta - 1)/a^2 + \cdots > 2$. Thus, the inequalities (7) cannot both be true, which proves that the sequence $\{q_r\}$ is strictly decreasing. Theorem 2 is proved.

Returning to formulas (*), it is necessary to note that calculations for p = 3, 5, 7 are very simple, by using (1). We omit the proof.

1994]

REFERENCES

- 1. L. Carlitz. "The Number of Binomial Coefficients Divisible by a Fixed Power of a Prime." *Rend. Circ. Mat. Palermo* 16 (1967):299-320.
- 2. L. Carlitz. "Distribution of Binomial Coefficients." Riv. Mat. Univ. Parma 11 (1970):45-64.
- 3. F. T. Howard. "The Number of Binomial Coefficients Divisible by a Fixed Power of 2." *Proc. Amer. Math. Soc.* 29 (1971):236-42.
- 4. F. T. Howard. "The Number of Binomial Coefficients Divisible by a Fixed Power of a Prime." Proc. Amer. Math. Soc. 37 (1973):358-62.
- 5. F. T. Howard. "The Number of Multinomial Coefficients Divisible by a Fixed Power of a Prime." *Pacific J. Math.* 50 (1974):99-108.
- 6. R. J. Martin & G. L. Mullen. "Reducing Multinomial Coefficients Modulo a Prime Power." *Computers and Mathematics with Applications* **10** (1984):37-41.
- N. A. Volodin. "Distribution of Polynomial Coefficients Congruent Modulo p^N." Mathematical Notes 45 (1989):195-99.
- 8. K. B. Stolarsky. "Digital Sums and Binomial Coefficients." Notices Amer. Math. Soc. 22 (1975):A-669.
- 9. K. B. Stolarsky. "Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity." SIAM J. Appl. Math. 32 (1977):717-30.
- 10. H. Harborth. "Number of Odd Coefficients." Proc. Amer. Math. Soc. 62 (1977):19-22.
- 11. A. H. Stein. "Binomial Coefficients Not Divisible by a Prime." *Number Theory*, (New York, 1985/1988), *Lecture Notes in Mathematics* **1383**:170-77 (Berlin-New York: Springer, 1989).
- 12. F. T. Howard. "Multinomial and *Q*-Binomial Coefficients Modulo 4 and Modulo *p*." The Fibonacci Quarterly **31.1** (1993):53-64.

AMS Classification Numbers: 11B65, 11B50, 05A10

Author and Title Index

The AUTHOR, TITLE, KEY-WORD, ELEMENTARY PROBLEMS, and ADVANCED PROBLEMS indices for the first 30 volumes of *The Fibonacci Quarterly* have been completed by Dr. Charles K. Cook. Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted version of the disk will be \$40.00 plus postage for non-subscribers, while subscribers to *The Fibonacci Quarterly* need only pay \$20.00 plus postage. For additional information, or to order a disk copy of the indices, write to:

PROFESSOR CHARLES K. COOK DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA AT SUMTER 1 LOUISE CIRCLE SUMTER, SC 29150

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook when you place your order and he will try to accommodate you. DO NOT SEND PAYMENT WITH YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends you the disk. A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is working on a SUBJECT index and will also be classifying all articles by use of the AMS Classification Scheme. Those who purchase the indices will be given one free update of all indices when the SUBJECT index and the AMS Classification of all articles published in *The Fibonacci Quarterly* are completed.