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INTRODUCTION AND BACKGROUND 

Yarn's [6] algorithm solves the problem of finding an optimal code tree, optimal in the sense 
of minimum average cost, when the code symbols are of unequal cost and the source symbols are 
equiprobable. He addresses both exhaustive codes, for which the code tree is a full tree, as well 
as nonexhaustive codes, but only the exhaustive case will be of concern here. In particular, for 
code symbol costs c(l) < c(2) < • • • < c(r) and a uniform source of size TV, where (N-l)/(r-1) is 
an integer, the Yarn code tree is generated as follows. Start with an r-ary tree consisting of a root 
node from which descend r leaf nodes labeled from left to right by c(l), c(2),..., c(r), the costs 
associated with the corresponding code symbols. Select the lowest cost node, let c be its cost, 
and let descend from it r leaf nodes labeled from left to right by c + c(l),c + c(2),...,c + c(r). 
Continue, by selecting the lowest cost node from the new tree, until N leaf nodes have been 
created. 

Horibe [3] studied a sequence of binary trees and showed that each tree in the sequence is a 
Yarn code tree for c(l) = 1, c(2) = 2. In particular, the kih tree has the k - 1st tree as its left sub-
tree and the k - 2 n d tree as its right subtree; for k - 1 and k = 2, the tree is only the root; c(l) is 
associated with the left descendant of a node and c(2) with the right descendant. These trees are 
called Fibonacci trees, and the number of leaves in the kth tree is the kth Fibonacci number. Note 
that some integers N are not equal to the kih Fibonacci number for any k so that not every Yarn 
code tree for c(l) = 1, c(2) = 2 is a Fibonacci tree. 

Chang [1] studied a sequence of r-ary trees that reduces to Horibe's sequence of Fibonacci 
trees for r = 2. In particular, the kth tree has the k-ith tree as its /th leftmost subtree, / = 1,..., r; 
for k - 1,..., r, the tree is only the root; and c(i) = i,i = l,...,r is associated with the descendants 
of a node in left to right order. For these particular costs, c(i) = /, i = 1,..., r, Chang's trees are 
Yarn code trees, and the number of leaves in the k^ tree is determined according to an integer 
sequence that general-izes the Fibonacci sequence. 

It is the purpose of this note to examine sequences of trees that are recursively constructed 
and are Varn code trees for integer costs c(l),..., c(r) whose greatest common divisor is 1. Since 
common factors shared by all costs do not affect Yarn's algorithm, the costs considered here are 
essentially all rational costs or all sets of rational costs with a common irrational multiplier. Thus, 
previous work on recursive characterizations of Varn code trees for particular integer code 
symbol costs is extended to the case of arbitrary integer code symbol costs. 

RECURSIVE CONSTRUCTION OF TREES 

For fixed integer costs c(l) < c(2) <•< c(r) with greatest common divisor 1, we will have 
c(r) "types" • of leaf nodes denoted by aua2, ...,aC(r). The k + lsi tree T(k + l) is constructed 
from the previous tree T(k) according to the following set of rules. A leaf node of type ax in 
T(k) will be replaced by r descendant nodes of types ac^,ac^2), •••,ac(r) °m 'eft t 0 ^g^t order in 
T(k +1). A node of type a • in T(k) will be replaced by a node of type a}_x in T(k +1), j = 2, ..., 
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c(r). The sequence of trees begins with 7(1), which consists of a single root node of type ac(r). 
This construction generalizes Horibe [3] and Chang [1]. 

An example of trees constructed in this fashion is given in Table 1 for the costs c(l) - 2, 
c(2) = 3, c(3) = 3, c(4) = 5. The trees are described using the following compact notation. Sibling 
nodes in left to right order are separated by + signs, and parentheses are used to indicate depth in 
tree from the root so that, for example, ((a2 + a3 +a3 +a5)+al+a1 +a3) denotes a4-ary tree 
with 4 depth 2 leaves descending from the root through a common intermediate node and 3 depth 
1 leaves descending from the root in left to right order and labeled according to type in left to 
right order as a2, a3, a3, a5, al9 al9 a3, respectively. 

TABLE 1. T(k) for c(l) = 2, c(2) = 3, c(3) = 3, c(4) = 5 

k 

1 
2 

1 3 
4 

1 5 
6 
7 
8 

II 9 

II 10 
11 

T(k) 

a5 

a4 

« 3 

<h 
<h 
(a2 +a3 +a3+a5) 
(aj +a2 +a2 +a4) 
((a2 +a3 +a3 +a5)+ax +aY +a3) 
((aj+a2+a2 +a4) + (a2 +a3+a3+a5) + (a2+a3+a3 + a5) + a2) 
(((a2 +a3 +a3 +a5)+aj +a1 + a3) + (a1 + a2 +a2 + a4) + (a1+a2 +a2 

(((aj + a2 +a2+a4) + (a2 +a3+a3+a5) + {a2 +a3+a3+a5)+a2) 
+ ((a2 +a3+a3+a5)+al+a1+a3) + ((a2+a3 +a3 + a5) 
+ar +al + a3) + (a2 +a3+a3 +a5)) 

+ a 4 )+a j ) 

By induction, T(k\ k > c(r), has T(k - c(i)) as its 7th leftmost subtree, / = 1,..., r. Because 
of the recursive tree construction, it is easy to give recurrence relations for the number of leaf 
nodes of each type in T(k). Use fJ(k) to denote the number of leaves of type aj9j = 1,..., c(r), 
in T(k). Then 

/'(*)= Z/'(*-*(0), (1) 
\<i<r 

where our initialization is fJ (k) = 1 for k +j - c(r) + 1, 1 < k < c(r), and fJ (k) = 0 for k +j' * 
c(r) +1,1 < k < c(r). Clearly, the number of leaves in T(k), f(k), is given by 

/(*)= E/y(*)=E/(*-c(0)- (2) 
\<j<c(r) \<i<r 
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VAMN CODES FOR N = f(k) 

The reason the recursive tree construction of the previous section is interesting is because the 
trees constructed are the minimum average codeword cost code trees for equiprobable sources of 
size f(k)y the Varn code trees for these source sizes. This is apparent because the construction 
rale splits the lowest cost leaf node at each stage, the node of type al9 and the evolution of the 
node types from T(k) to T(k +1) keeps track of the relative node costs, that is, how many trees 
until that node type becomes the least cost node. Thus, the analysis of the average cost of T(k), 
C(T(k))9 is of interest. 

To find C(T(k)), the assumption is that the tree is being used to encode an equiprobable 
source of f(k) source symbols, and the costs of the codewords are the costs of the leaves of the 
tree. In T(k)9 a leaf node of type Qj costs k-(c(r) + l-j) by induction on k. Thus, C(T(k)) is 
given by 

C(T(k))= ^(k-{c(r) + l-j))f'&)'/&)• (3) 
l<j<c(r) 

We now need to analyze these recurrence relations. By the method of generating functions 
(see, e.g., [2]), we have from (1) and its initialization that / ; (k) satisfies 

X/'(*)x*=*c(r)+w(i- x/wo<7>c( , )Vf1- 2>c(; 

where I(c(i) <j) = \ if c(i) < j and 0 otherwise. The coefficients of xk obtained from the right-
hand side of this expression give/7 (k). 

For the example of Table 1 with FJ (x) = Yjx<k<xf (k)xk, we have 

F\x) = x51(l-x2 -2x3 -x5) = x5+x7 +2x% +x9+5x10 +5X11 + •••, 
F2(x) = x4 /(l-x2 -2x3 -x5) = x4 +x6 + 2X1 +x* +5x9 +5x10 +8xn + •••, 
F\x) = x\l-x2)/(l-x2 -2x3 -x5) = x3 +2x6 + 3xz +4x9 +3x10 + I2xn + ••-, 
F4(x) = x2(\-x2-2x3)/(l-x2-2x3-x5) = x2+x7+x9+2x10+xn + ---, 
F5(x) = x(l-x2 -2x3)l(l-x2 -2x3 -x5) = xl +x6 +x* + 2x9 +x10 +5x11 + ••-, 

from which it can be observed that 

f2(k) = f\k + l), 
f3(k) = f\k + 2)-f\k), 
f\k) = f1(k + 3)-fl(k + l)-2f\k), 
f\k) = fl(k + 4)-f\k + 2)-2fl(k + l). 

Although we do not have a convenient closed form expression for fl(k) in terms of &, it is inter-
esting to note that 

f(k) = -2fl(k)-2fl(k + \)+fl(k + 3)+f\k + 4). 
From (2), we have F(x) = Ei<y<c(r) FJ (x) which, for the example, becomes 

F(x) = (x + x2 - 2x4 - 2x5) I (1 - x2 - 2x3 - x5) 
= x + x2+x3+x4 + x5 +4x6 +4x7 +7x8 + 13x9 + 16x10 + 31x" + ... . 
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From (3), we have that the generating function for the unnormalized cost, 

^f(k)C(T(k))x\ 
l<k<oo 

becomes 
xdF{x)ldx- £ ( c ( r ) + l -y) i^(x) . 

\<j<c(r) 

For the example, this generating function becomes 

(I3x6 + I3x7 +6xs -2x9 -2xl0)/(l-x2 -2x3 -x5)2 

= 13x6 + 13JC7 + 32x8 +76x9 + 101x10 +241X11 + •••, 

so that the normalized costs C(T(k)) are as given in Table 2. 

TABLE 2. C(T{k)) for c(l) = 2, c(2) = 3, c(3) - 3, c(4) = 5 
and Its Entropy Lower Bound 

k 

1 6 

1 7 

1 8 

1 9 

1 10 

1 u 

C{T{k)) 

13/4 = 3.25 

13/4 = 3.25 

32/7 = 4.57 

76/13 = 5.85 

101/16 = 6.31 
241/31=7.77 

-iog,/(*ri 
3.00 1 
3.00 1 
4.21 | 

5.55 | 
6.00 | 
7.43 1 

Performance bounds on the minimum expected cost of code trees for unequal costs are given 
in Krause [4] in terms of the source entropy base t, where t is the unique positive root of 
l~^<i<i<rxC(l) = 0. For f{k) equiprobable source symbols, this entropy is -log, f(k), and the 
bounds are 

-log, / ( * ) < C(T{k)) < -log, / ( * ) + c(r). 

However, the code whose cost satisfies the upper bound is not necessarily exhaustive; thus, only 
the lower bound is relevant here, For the example used here, with c(l) = 2, c(2) = 3, c(3) = 3, 
c(4) = 5,t» 0.63, and the source entropy base t is also provided in Table 2 for comparison with 
C(T(k)). Also of interest in this connection are the new performance bounds due to Savari [5]. 

A few comments should be made about this approach to Varn codes. First, the indexing of 
trees in the order generated by the construction procedure is key; that is, the recurrence relations 
are elegant stated with this indexing but, possibly, disconcerting aspects of the indexing arise, 
such as 7(7) and 7(6) in the example being identical trees with respect to node costs (although 
different with respect to node types). Also, for some choices of costs, c(l),c(2), ...,c(r), it is 
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convenient to solve the recurrences explicitly, particularly when the roots of 1 - E ^ , . xc(0 are 
easy to find, as in the case in which r = 2. 
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indices for the first 30 volumes of The Fibonacci Quarterly have been completed by Dr. Charles K. Cook. 
Publication of the completed indices is on a 3.5-inch, high density disk. The price for a copyrighted version 
of the disk will be $40.00 plus postage for non-subscribers, while subscribers to The Fibonacci Quarterly 
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to: 

PROFESSOR CHARLES K. COOK 
DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF SOUTH CAROLINA AT SUMTER 
1 LOUISE CIRCLE 
SUMTER, SC 29150 

The indices have been compiled using WORDPERFECT. Should you wish to order a copy of the indices for 
another wordprocessor or for a non-compatible IBM machine, please explain your situation to Dr. Cook 
when you place your order and he will try to accommodate you. D O N O T SEND PAYMENT W I T H 
YOUR ORDER. You will be billed for the indices and postage by Dr. Cook when he sends you the disk. 
A star is used in the indices to indicate unsolved problems. Furthermore, Dr. Cook is working on a 
SUBJECT index and will also be classifying all articles by use of the AMS Classification Scheme. Those 
who purchase the indices will be given one free update of all indices when the SUBJECT index and the 
AMS Classification of all articles published in The Fibonacci Quarterly are completed. 
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